This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information-population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others-to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state.
We estimate the technical potential of rooftop solar photovoltaics (PV) for select US cities by combining light detection and ranging (lidar) data, a validated analytical method for determining rooftop PV suitability employing geographic information systems, and modeling of PV electricity generation. We find that rooftop PV's ability to meet estimated city electricity consumption varies widely-from meeting 16% of annual consumption (in Washington, DC) to meeting 88% (in Mission Viejo, CA). Important drivers include average rooftop suitability, household footprint/ per-capita roof space, the quality of the solar resource, and the city's estimated electricity consumption. In addition to city-wide results, we also estimate the ability of aggregations of households to offset their electricity consumption with PV. In a companion article, we will use statistical modeling to extend our results and estimate national rooftop PV technical potential. In addition, our publically available data and methods may help policy makers, utilities, researchers, and others perform customized analyses to meet their specific needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.