BackgroundNeuroinflammation is associated with virtually all major neurodegenerative disorders, including Alzheimer’s disease (AD). Although it remains unclear whether neuroinflammation is the driving force behind these disorders, compelling evidence implicates its role in exacerbating disease progression, with a key player being the potent proinflammatory cytokine TNF-α. Elevated TNF-α levels are commonly detected in the clinic and animal models of AD.MethodsThe potential benefits of a novel TNF-α-lowering agent, 3,6′-dithiothalidomide, were investigated in cellular and rodent models of neuroinflammation with a specific focus on AD. These included central and systemic inflammation induced by lipopolysaccharide (LPS) and Aβ1–42 challenge, and biochemical and behavioral assessment of 3xTg-AD mice following chronic 3,6′-dithiothaliodmide.Results3,6′-Dithiothaliodmide lowered TNF-α, nitrite (an indicator of oxidative damage) and secreted amyloid precursor protein (sAPP) levels in LPS-activated macrophage-like cells (RAW 264.7 cells). This translated into reduced central and systemic TNF-α production in acute LPS-challenged rats, and to a reduction of neuroinflammatory markers and restoration of neuronal plasticity following chronic central challenge of LPS. In mice centrally challenged with Aβ1–42 peptide, prior systemic 3,6′-dithiothalidomide suppressed Aβ-induced memory dysfunction, microglial activation and neuronal degeneration. Chronic 3,6′-dithiothalidomide administration to an elderly symptomatic cohort of 3xTg-AD mice reduced multiple hallmark features of AD, including phosphorylated tau protein, APP, Aβ peptide and Aβ-plaque number along with deficits in memory function to levels present in younger adult cognitively unimpaired 3xTg-AD mice. Levels of the synaptic proteins, SNAP25 and synaptophysin, were found to be elevated in older symptomatic drug-treated 3xTg-AD mice compared to vehicle-treated ones, indicative of a preservation of synaptic function during drug treatment.ConclusionsOur data suggest a strong beneficial effect of 3,6′-dithiothalidomide in the setting of neuroinflammation and AD, supporting a role for neuroinflammation and TNF-α in disease progression and their targeting as a means of clinical management.
Therapeutic irradiation of the brain is commonly used to treat brain tumors but can induce cognitive impairments that can severely affect quality of life. The underlying mechanisms responsible for radiation-induced cognitive deficits are unknown but likely involve alterations in neuronal activity. To gain some mechanistic insight into how irradiation may affect hippocampal neurons known to be associated with cognitive function, we quantitatively assessed the molecular distribution of the behaviorally induced immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) at the level of mRNA and the protein. Young adult C57BL/6J mice received whole-brain irradiation with 0 or 10 Gy, and 1 week or 2 months later, exploration of a novel environment was used to induce Arc expression. The fractions of neurons expressing Arc mRNA and Arc protein were detected using fluorescence in situ hybridization and immunocytochemistry, respectively. Our results showed that there was a significant reduction in the percentage of neurons expressing Arc protein 1 week after irradiation, whereas 2 months after irradiation, there was a reduction in the percentage of neurons expressing both Arc mRNA and Arc protein. Importantly, radiationinduced changes in Arc expression were not a result of neuronal cell loss. The changes observed at 2 months were associated with a significant increase in the number of activated microglia, supporting the idea that inflammation may contribute to neuronal dysfunction. These findings are the first to show that local brain irradiation initiates changes in hippocampal neurons that disrupt the activity patterns (Arc expression) associated with neuroplasticity and memory.
Growing evidence suggests that adult-born granule cells integrate into hippocampal networks and are required for proper cognitive function. Although neuroinflammation is involved in many disorders associated with cognitive impairment, it remains unknown whether it impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Under similar behavioral conditions, exploration-induced expression of the immediate-early gene Arc in hippocampal cells has been linked to cellular activity observed by electrophysiological recording. By detecting exploration-induced Arc protein expression, we investigated whether neuroinflammation alters the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Neuroinflammation was induced in rats by intra-cerebroventricular infusion of lipopolysaccharide for 28 days. Animals received bromodeoxyuridine injections starting on day 29 (five days) and were euthanized two months later. Persistent lipopolysaccharide-induced neuroinflammation was reliably detected by microglial activation in the hippocampus. Neuroinflammation did not impact the number of adult-born neurons but did alter their migration pattern through the granule cell layer. There was a positive correlation between the density of activated microglia and alterations in the fraction of existing granule neurons expressing Arc, suggesting that neuroinflammation induced a long-term disruption of hippocampal network activity. The proportion of adult-born neurons expressing behaviorally induced Arc was significantly lower in lipopolysaccharide-treated rats than in controls. This observation supports the fact that neuroinflammation significantly impacts adult-born neurons recruitment into hippocampal networks encoding spatial information.
Exposure to ionizing irradiation may affect brain functions directly, but may also change tissue sensitivity to a secondary insult such as trauma, stroke or degenerative disease. To determine if a low dose of particulate irradiation sensitizes the brain to a subsequent injury, C56BL6 mice were exposed to brain only irradiation with 0.5 Gy of 56Fe ions. Two months later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Three weeks after trauma animals received multiple BrdU injections and 30 days later were tested for cognitive performance in the Morris water maze. All animals where able to locate the visible and hidden platform during training; however, treatment effects were seen when spatial memory retention was assessed in the probe trial (no platform). While sham and irradiated animals showed spatial memory retention, mice that received trauma alone did not. When trauma was preceded by irradiation, performance in the water maze was not different from sham-treated animals, suggesting that low dose irradiation had a protective effect in the context of a subsequent traumatic injury. Measures of hippocampal neurogenesis showed that combined injury did not induce any changes greater that those seen after trauma or radiation alone. After trauma there was a significant decrease in the percentage of neurons expressing the behaviorally-induced immediate early gene Arc in both hemispheres, without associated neuronal loss. After combined injury there were no differences relative to sham-treated mice. Our results suggest that combined injury resulted in decreased alterations of our endpoints compared to trauma alone. While the underlying mechanisms are not yet known, these results resemble a preconditioning, adaptive, or inducible-like protective response, where a sublethal or potentially injurious stimulus (i.e. irradiation) induces tolerance to a subsequent and potentially more damaging insult (trauma).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.