Key pointsr Inadequate nutrient intake during early life can programme a low adult muscle mass. We have used a mouse model to identify the developmental window when the skeletal musculature is vulnerable to programming and to identify factors that limit the muscle's ability to respond when normal nutrition is restored.r We established that the developmental age when nutritional rehabilitation occurs following an episode of poor nutrition, rather than the duration or severity of the nutrient restriction, is the critical factor that determines if muscle mass can be recuperated.r The ability to recover depends on whether the muscles' translational capacity, i.e. ribosomal abundance, can increase sufficiently to raise protein synthesis rates sufficiently to accelerate protein deposition.r We show that the ability to increase ribosomal abundance was associated with increased expression of the nucleolar transcription factor UBF (upstream binding factor), which regulates RNA polymerase 1 activity and rRNA transcription, the limiting factor for ribosomal production.Abstract Nutritionally-induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dams fed a protein-restricted diet during gestation (GLP) or pups suckled from postnatal day 1 (PN1) to PN11 (E-UN), or PN11 to PN22 (L-UN) on protein-restricted or control dams. All pups were refed under control conditions following the episode of undernutrition. Before refeeding, and 2, 7 and 21 days later, muscle protein synthesis was measured in vivo. There were no long-term deficits in protein mass in GLP and E-UN offspring, but in L-UN offspring muscle protein mass remained significantly smaller even after 18 months (P < 0.001). E-UN differed from L-UN offspring by their capacity to upregulate postprandial muscle protein synthesis when refed (P < 0.001), a difference that was attributable to a transient increase in ribosomal abundance, i.e. translational capacity, in E-UN offspring (P < 0.05); translational efficiency was similar across dietary treatments. The postprandial phosphorylation of Akt and extracellular signal-regulated protein kinases were similar among treatments. However, activation of the ribosomal S6 kinase 1 via mTOR (P < 0.02), and total upstream binding factor abundance were significantly greater in E-UN than L-UN offspring (P < 0.02). The results indicate that the capacity of muscles to recover following perinatal undernutrition depends on developmental age as this establishes whether ribosome abundance can be enhanced sufficiently to promote the protein synthesis rates required to accelerate protein deposition for catch-up growth.
Key points Impaired growth during fetal life can reprogramme heart development and increase the risk for long‐term cardiovascular dysfunction. It is uncertain if the developmental window during which the heart is vulnerable to reprogramming as a result of inadequate nutrition extends into the postnatal period. We found that adult female mice that had been undernourished only from birth to 3 weeks of age had disproportionately smaller hearts compared to males, with thinner ventricle walls and more mononucleated cardiomyocytes. In females, but not males, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited and maximal exercise capacity was compromised. These data suggest that the developmental window during which the heart is vulnerable to reprogramming by inadequacies in nutrient intake may extend into postnatal life and such individuals could be at increased risk for a cardiac event as a result of strenuous exercise. Abstract Adults who experienced undernutrition during critical windows of development are at increased risk for cardiovascular disease. The contribution of cardiac function to this increased disease risk is uncertain. We evaluated the effect of a short episode of postnatal undernutrition on cardiovascular function in mice at the whole animal, organ, and cellular levels. Pups born to control mouse dams were suckled from birth to postnatal day (PN) 21 on dams fed either a control (20% protein) or a low protein (8% protein) isocaloric diet. After PN21 offspring were fed the same control diet until adulthood. At PN70 V̇O2, max was measured by treadmill test. At PN80 cardiac function was evaluated by echocardiography and Doppler analysis at rest and following β‐adrenergic stimulation. Isolated cardiomyocyte nucleation and Ca2+ transients (with and without β‐adrenergic stimulation) were measured at PN90. Female mice that were undernourished and then refed (PUN), unlike male mice, had disproportionately smaller hearts and their exercise capacity, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited. A reduced left ventricular end diastolic volume, impaired early filling, and decreased stored energy at the beginning of diastole contributed to these impairments. Female PUN mice had more mononucleated cardiomyocytes; under resting conditions binucleated cells had a functional profile suggestive of increased basal adrenergic activation. Thus, a brief episode of early postnatal undernutrition in the mouse can produce persistent changes to cardiac structure and function that limit exercise/functional capacity and thereby increase the risk for the development of a wide variety of cardiovascular morbidities.
Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are unknown. To test the hypothesis that blunting of Pax7+ muscle progenitor cell proliferative activity by GLC in vivo also contributes to reduced fetal muscle growth, pregnant rats were administered dexamethasone (DEX;1 mg/L drinking water) from embryonic day (ED) 13 to ED21. Their responses were compared to pair-fed (PF) and ad libitum-fed controls (CON). Bromo-deoxyuridine (BrdU) was administered before delivery to measure myonuclear accretion. Fetal hind limb and diaphragm muscles were collected at term and analyzed for myofiber cross-sectional area (CSA), total and BrdU+ myonuclei, Pax7+ nuclei, MyoD and myogenin protein and mRNA abundance, and myosin heavy chain (MyHC) isoform composition. Mean fiber CSA, myonuclei/myofiber and Pax7+ nuclei/myofiber ratios were reduced in DEX compared to CON and PF muscles; CSA/myonucleus, BrdU+/total myonuclei, and BrdU+ myonuclei/Pax7+ nuclei were similar among groups. Myogenin abundance was reduced and MyHC-slow was increased in DEX fetuses. The data are consistent with GLC inhibition of muscle progenitor cell proliferation limiting satellite cell and myonuclear accretion. The response of PF-fed compared to CON muscles indicated that decreased food consumption by DEX dams contributed to the smaller myofiber CSA but did not affect Pax7+ nuclear accretion. Thus, the effect on satellite cell reserve and myonuclear number also contributes to the blunting of fetal muscle growth by GLC.
Background Rapid growth of skeletal muscle in the neonate requires the coordination of protein deposition and myonuclear accretion. During this developmental stage, muscle protein synthesis is highly sensitive to amino acid supply, especially Leu, but we do not know if this is true for satellite cells, the source of muscle fiber myonuclei. Objective We examined whether dietary protein restriction reduces myonuclear accretion in the neonatal pig, and if any reduction in myonuclear accretion is mitigated by restoring Leu intake. Methods Neonatal pigs (1.53 ± 0.2 kg) were fitted with jugular vein and gastric catheters and fed 1 of 3 isoenergetic milk replacers every 4 h for 21 d: high protein [HP; 22.5 g protein/(kg/d); n= 8]; restricted protein [RP; 11.2 g protein/(kg/d); n= 10]; or restricted protein with Leu [RPL; 12.0 g protein/(kg/d); n= 10]. Pigs were administered 5-bromo-2’-deoxyuridine (BrdU; 15 mg/kg) intravenously every 12 h from days 6 to 8. Blood was sampled on days 6 and 21 to measure plasma Leu concentrations. On day 21, pigs were killed and the longissimus dorsi (LD) muscle was collected to measure cell morphometry, satellite cell abundance, myonuclear accretion, and insulin-like growth factor (IGF) system expression. Results Compared with HP pigs, postprandial plasma Leu concentration in RP pigs was 37% and 47% lower on days 6 and 21, respectively (P < 0.05); Leu supplementation in RPL pigs restored postprandial Leu to HP concentrations. Dietary protein restriction reduced LD myofiber cross-sectional area by 21%, satellite cell abundance by 35%, and BrdU+ myonuclear abundance by 25% (P < 0.05); Leu did not reverse these outcomes. Dietary protein restriction reduced LD muscle IGF2 expression by 60%, but not IGF1 or IGF1R expression (P < 0.05); Leu did not rescue IGF2 expression. Conclusions Satellite cell abundance and myonuclear accretion in neonatal pigs are compromised when dietary protein intake is restricted and are not restored with Leu supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.