Clustering is a fundamental task in many vision applications. To date, most clustering algorithms work in a batch setting and training examples must be gathered in a large group before learning can begin. Here we explore incremental clustering, in which data can arrive continuously. We present a novel incremental model-based clustering algorithm based on nonparametric Bayesian methods, which we call Memory Bounded Variational Dirichlet Process (MB-VDP). The number of clusters are determined flexibly by the data and the approach can be used to automatically discover object categories. The computational requirements required to produce model updates are bounded and do not grow with the amount of data processed. The technique is well suited to very large datasets, and we show that our approach outperforms existing online alternatives for learning nonparametric Bayesian mixture models.
What type of algorithms and statistical techniques support learning from very large datasets over long stretches of time? We address this question through a memory bounded version of a variational EM algorithm that approximates inference in a topic model. The algorithm alternates two phases: "model building" and "model compression" in order to always satisfy a given memory constraint. The model building phase expands its internal representation (the number of topics) as more data arrives through Bayesian model selection. Compression is achieved by merging data-items in clumps and only caching their sufficient statistics. Empirically, the resulting algorithm is able to handle datasets that are orders of magnitude larger than the standard batch version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.