Parasitic nematodes in the genus
Dracunculus
have a complex life cycle that requires more than one host species in both aquatic and terrestrial habitats. The most well-studied species,
Dracunculus medinensis
, is the causative agent of human Guinea worm disease (dracunculiasis). There are several other
Dracunculus
species that infect non-human animals, primarily wildlife (reptiles and mammals). The classic route of
D. medinensis
transmission to humans is through the ingestion of water containing the intermediate host, a cyclopoid copepod, infected with third-stage larvae (L3s). However, many animal hosts (e.g., terrestrial snakes, dogs) of other
Dracunculus
sp. appear unlikely to ingest a large number of copepods while drinking. Therefore, alternative routes of infection (e.g., paratenic or transport hosts) may facilitate
Dracunculus
transmission to these species. To better understand the role of paratenic and transport hosts in
Dracunculus
transmission to animal definitive hosts, we compared copepod ingestion rates for aquatic species (fish, frogs [tadpoles and adults], and newts) which may serve as paratenic or transport hosts. We hypothesized that fish would consume more copepods than amphibians. Our findings confirm that African clawed frogs (
Xenopus laevis
) and fish consume copepods, but that fish ingest, on average, significantly higher numbers (68% [34/50]) than adult African clawed frogs (36% [18/50]) during a 24-h time period. Our results suggest that amphibians and fish may play a role in the transmission of
Dracunculus
to definitive hosts. Still, additional research is required to determine whether, in the wild, fish or frogs are serving as paratenic or transport hosts. If so, they may facilitate
Dracunculus
transmission. However, if these animals simply act as dead-end hosts or as means of copepod population control, they may decrease
Dracunculus
transmission.
Dracunculus medinensis, also known as the African Guinea worm, is the causative agent of dracunculiasis and the focus of the global Guinea Worm Eradication Program (GWEP). Transmission of D. medinensis to humans occurs primarily by drinking water containing cyclopoid copepods infected with third-stage D. medinensis larvae. A common intervention to interrupt transmission and decrease the number of copepods in infected water bodies is the application of the organophosphate larvicide Abate® (temephos). However, the use of alternative compounds to help decrease copepod populations would be beneficial to the GWEP. We compared the immobilization of copepods by three compounds: Abate, Natular® (spinosad), and diflubenzuron. Our results confirm that neither diflubenzuron nor Natular immobilized copepods as quickly or as effectively as Abate. However, doubling or tripling the suggested concentration of Natular resulted in immobilization rates similar to Abate over 72 hours of continuous exposure. Further research on the possible effects of higher concentrations of Natular on the environment and nontarget organisms is necessary to determine whether this compound can be used safely to control the copepod population.
Echinococcus species are zoonotic tapeworms that can impact the health of wildlife, domestic animals, livestock, and humans. Two species of interest in North America are Echinococcus multilocularis and Echinococcus canadensis (Echinococcus granulosus sensu lato). The primary wildlife definitive hosts for E. multilocularis and E. canadensis are similar, including red foxes (Vulpes vulpes), gray foxes (Urocyon cinereoargenteus), coyotes (Canis latrans), and wolves (Canis lupus). These two Echinococcus spp. use different intermediate hosts, including small mammals for E. multilocularis and artiodactylids for E. canadensis. Although historically absent from much of the eastern US, recent reports in new US states (e.g., Virginia, Vermont, Maine, Missouri) highlight the need for Echinococcus spp. surveillance in this region. During 2019–2020, 308 gastrointestinal tracts were collected from wild canids in Pennsylvania and microscopically screened for adult Echinococcus species. Two coyotes (2/155) were co-infected with both E. multilocularis and E. canadensis as determined by molecular confirmation. No red foxes (n=137) or gray foxes (n=16) were positive. These data indicate both Echinococcus species are present in Pennsylvanian coyotes, highlighting the need to better understand the ecological and epidemiological consequences for human and animal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.