Classical molecular dynamics (MD) simulations were used to investigate how free surfaces, as well as supporting substrates, affect phase separation in a NiAg alloy. Bulk samples, droplets, and droplets deposited on a graphene substrate were investigated at temperatures that spanned regions of interest in the bulk NiAg phase diagram, i.e., miscible and immiscible liquid, liquid-crystal, and crystal-crystal regions. Using MD simulations to cool down a bulk sample from 3000 K to 800 K, it was found that phase separation below 2400 K takes place in agreement with the phase diagram. When free surface effects were introduced, phase separation was accompanied by a core-shell transformation: spherical droplets created from the bulk samples became core-shell nanoparticles with a shell made mostly of Ag atoms and a core made of Ni atoms. When such droplets were deposited on a graphene substrate, the phase separation was accompanied by Ni layering at the graphene interface and Ag at the vacuum interface. Thus, it should be possible to create NiAg core-shell and layer-like nanostructures by quenching liquid NiAg samples on tailored substrates. Furthermore, interesting bimetallic nanoparticle morphologies might be tuned via control of the surface and interface energies and chemical instabilities of the system.
Classical molecular dynamics (MD) simulations are used to investigate the role of phase separation (PS) on the Rayleigh-Plateau (RP) instability. Ni−Ag bulk structures are created at temperatures (2000 K and 1400 K) that generate different PS length scales, λ PS , relative to the RP instability length scale, λ RP . Rectanguloids are then cut from the bulk structures and patterned with a perturbation of certain amplitude and wavelength, λ RP . It is found that when λ PS ≪ λ RP (2000 K), the patterned rectanguloids break up into nanoparticles in a manner consistent with classical RP theory, whereas when λ PS ≪ λ RP (1400 K), soluto-capillarity affects the RP instability significantly. Specifically, since Ag has a lower surface energy than Ni, Ag migrates to cover neighboring Ni regions, therefore modifying the RP instability. Thus, we demonstrate that the phase separation length scale of an immiscible alloy can be exploited to direct the assembly of functional bimetallic alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.