Abstract:In the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the US Department of Energy's Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 m (based on RMSE) with a flying height of 344 m above ground level (AGL).
The height and shape of shrub canopies are critical measurements for characterizing shrub steppe rangelands. Remote sensing technologies might provide an efficient method to acquire these measurements across large areas. This study compared point-cloud and rasterized lidar data to field-measured sagebrush height and shape to quantify the correlation between field-based and lidar-derived estimates. The results demonstrated that discrete return, small-footprint lidar with high point density (9.46 points/m 2) can provide strong predictions of true sagebrush height (R 2 of 0.84 to 0.86), but with a consistent underestimation of approximately 30 percent. Our results provided the first successful lidar-based descriptors of sagebrush shape with R 2 values of 0.65, 0.74, and 0.78 for respective predictions of shortest canopy diameter, longest canopy diameter, and canopy area. Future studies can extend lidar-derived shrub height and shape measurements to canopy volume, cover, and biomass estimates.
UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification.The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels.In many cases, the supervised classifications accentuated noise or features in the mosaic that were artifacts of color balancing and "feathering" areas of flightline overlap. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus).
Eliminating all stop words from the feature space is a standard practice of preprocessing in text mining, regardless of the domain which it is applied to. However, this may result in loss of important information, which adversely affects the accuracy of the text mining algorithm. Therefore, this paper proposes a novel methodology for selecting the optimal set of domain specific stop words for improved text mining accuracy. First, the presented methodology retains all the stop words in the text preprocessing phase. Then, an evolutionary technique is used to extract the optimal set of stop words that result in the best classification accuracy. The presented methodology was implemented on a corpus of open source news articles related to critical infrastructure hazards. The first step of mining geo-dependencies among critical infrastructures from text is text classification. In order to achieve this, article content was classified into two classes: 1) text content with geo-location information, and 2) text content without geo-location information. Classification accuracy presented methodology was compared to accuracies of four other test cases. Experimental results with 10-fold cross validation showed that the presented method yielded an increase of 1.76% or higher in True Positive (TP) rate and a 2.27% or higher increase in the True Negative (TN) rate compared to the other techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.