Use of membrane inlet mass spectrometers (MIMS) for quantitative measurements of dissolved gases and volatile organics over a wide range of ocean depths requires characterization of the influence of hydrostatic pressure on the permeability of MIMS inlet systems. To simulate measurement conditions in the field, a laboratory apparatus was constructed for control of sample flow rate, temperature, pressure, and the concentrations of a variety of dissolved gases and volatile organic compounds. MIMS data generated with this apparatus demonstrated thatthe permeability of polydimethylsiloxane (PDMS) membranes is strongly dependent on hydrostatic pressure. For the range of pressures encountered between the surface and 2000 m ocean depths, the pressure dependent behavior of PDMS membranes could not be satisfactorily described using previously published theoretical models of membrane behavior. The observed influence of hydrostatic pressure on signal intensity could, nonetheless, be quantitatively modeled using a relatively simple semiempirical relationship between permeability and hydrostatic pressure. The semiempirical MIMS calibration developed in this study was applied to in situ underwater mass spectrometer (UMS) data to generate high-resolution, vertical profiles of dissolved gases in the Gulf of Mexico. These measurements constitute the first quantitative observations of dissolved gas profiles in the oceans obtained by in situ membrane inlet mass spectrometry. Alternative techniques used to produce dissolved gas profiles were in good accord with UMS measurements.
Autonomous chemical sensors are required to document the marine carbon dioxide system's evolving response to anthropogenic CO2 inputs, as well as impacts on short-and long-term carbon cycling. Observations will be required over a wide range of spatial and temporal scales, and measurements will likely need to be maintained for decades. Measurable CO2 system variables currently include total dissolved inorganic carbon (DIC), total alkalinity (AT), CO2 fugacity (fCO2), and pH, with comprehensive characterization requiring measurement of at least two variables. These four parameters are amenable to in situ analysis, but sustained deployment remains a challenge. Available methods encompass a broad range of analytical techniques, including potentiometry, spectrophotometry, conductimetry, and mass spectrometry. Instrument capabilities (precision, accuracy, endurance, reliability, etc.) are diverse and will evolve substantially over the time that the marine CO2 system undergoes dramatic changes. Different suites of measurements/parameters will be appropriate for different sampling platforms and measurement objectives.
Procedures have been developed for the determination of total dissolved inorganic carbon (DIC) in acidified seawater using an underwater mass spectrometer. Factors affecting the response of the membrane introduction mass spectrometer (MIMS) system were examined to optimize calibrations and enhance the accuracy of component ocean carbon system measurements. Laboratory studies examined the following influences on MIMS measurements of DIC: bicarbonate and carbonate contributions to the MIMS CO 2 signal intensity, linearity of MIMS response over a wide range of carbon dioxide concentrations, influence of sample salinity on membrane permeability, and capability to use acidified solutions for calibrations of both DIC and CO 2 fugacity. It was observed that (a) bicarbonate and carbonate contributions to carbon dioxide signal intensity were significant at slow flow rates, (b) MIMS response was linearly dependent on DIC within the concentration range of interest, (c) salinity has a discernable influence on membrane permeability that is, in turn, dependent on hydrostatic pressure, and (d) well calibrated MIMS measurements for both DIC and CO 2 fugacity can be obtained using acidified DIC standards. High flow rates are required during CO 2 fugacity measurements in circumneutral seawater to eliminate signal contributions from bicarbonate and carbonate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.