Nine organic acids (citric acid, galacturonic acid, glycolic acid, isocitric acid, malic acid, oxalic acid, quinic acid, shikimic acid, and tartaric acid) and two anions (phosphate and sulfate) were determined in a suite of Vaccinium berry-containing dietary supplement standard reference materials (SRMs). Following solvent extraction, three independent methods were utilized in the quantification of these compounds. The first method involved reversed-phase liquid chromatography with ultraviolet absorbance detection at 210 nm and isotope dilution mass spectrometry. The second method utilized ion chromatography with conductivity detection. Finally, gas chromatography with isotope dilution mass spectrometry detection was used following derivatization with N-methyl-N-trifluoroacetamide (MSTFA). The combined data from these methods was used for the assignment of organic acid levels in the seven candidate SRMs.
Speciation measurements of gadolinium in liposomal MRI contrast agents (CAs) are complicated by the presence of emulsifiers, surfactants, and therapeutic agents in the formulations. The present paper describes two robust, hyphenated chromatography methods for the separation and quantification of gadolinium in nanoemulsion-based CA formulations. Three potential species of gadolinium, free gadolinium ion, gadolinium chelated by diethylenetriamine pentaacetic acid, and gadolinium chelated by 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid, were present in the CA formulations. The species were separated by reversed-phase chromatography (reversed phase high-performance liquid chromatography, RP-HPLC) or by high-pressure size-exclusion chromatography (HPSEC). For RP-HPLC, fluorescence detection and post-column online isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) were used to measure the amount of gadolinium in each species. Online ID-ICP-MS and species-specific isotope dilution (SID)-ICP-MS were used in combination with the HPSEC column. The results indicated that some inter-species conversions and degradation had occurred within the samples and that SID-ICP-MS should be used to provide the most reliable measurements of total and speciated gadolinium. However, fluorescence and online ID-ICP-MS might usefully be applied as qualitative, rapid screening procedures for the presence of free gadolinium ions.
In this key comparison anion calibration solutions of nitrate and nitrite were investigated. The mass fractions of the anions in both solutions were about 1 g/kg. For the nitrate comparison 8 participants provided results; 3 analytical techniques were used: ion chromatography, capillary electrophoresis and coulometry after ion exchange. The nitrite amount content was determined by 7 participants using one of the following 3 techniques: ion chromatography, titrimetry and capillary electrophoresis.The following institutes participated in this key comparison: INTI (Argentina), KRISS (Korea), LNE (France), NIM (Pepole's Republic of China), NIST (USA), NMIJ (Japan), SMU (Slovakia) and VNIIM (Russia).The variability (RSD) of the results is about 0.75% for both the nitrite and the nitrate solutions. Compared to the key comparison CCQM-K29 the results of CCQM-K59 were significantly worse. This is in part due to the measurement methods used, possibly also due to the standards used by the institutes.A pilot study (P89) was performed in parallel on the same calibration solutions used in this K59 comparison study by laboratories preferring to participate in the pilot study and on a seawater sample containing about 0.1 mg/kg nitrite and 1 mg/kg nitrate. The results of the pilot study are reported separately.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.