Proteins can inhibit lipid oxidation by biologically designed mechanisms (e.g. antioxidant enzymes and iron-binding proteins) or by nonspecific mechanisms. Both of these types of antioxidative proteins contribute to the endogenous antioxidant capacity of foods. Proteins also have excellent potential as antioxidant additives in foods because they can inhibit lipid oxidation through multiple pathways including inactivation of reactive oxygen species, scavenging free radicals, chelation of prooxidative transition metals, reduction of hydroperoxides, and alteration of the physical properties of food systems. A protein's overall antioxidant activity can be increased by disruption of its tertiary structure to increase the solvent accessibility of amino acid residues that can scavenge free radicals and chelate prooxidative metals. The production of peptides through hydrolytic reactions seems to be the most promising technique to form proteinaceous antioxidants since peptides have substantially higher antioxidant activity than intact proteins. While proteins and peptides have excellent potential as food antioxidants, issues such as allergenicity and bitter off-flavors as well as their ability to alter food texture and color need to be addressed.
Green tea (Camellia sinensis) is rich in catechins, of which (−)-epigallocatechin-3-gallate (EGCG) is the most abundant. Studies in animal models of carcinogenesis have shown that green tea and EGCG can inhibit tumorigenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed including both antioxidant and pro-oxidant effects, but questions remain regarding the relevance of these mechanisms to cancer prevention. In the present review we will discuss the redox chemistry of the tea catechins and the current literature on the antioxidant and pro-oxidative effects of the green tea polyphenols as they relate to cancer prevention. We report that although the catechins are chemical antioxidants which can quench free radical species and chelate transition metals, there is evidence that some of the effects of these compounds may be related to induction of oxidative stress. Such pro-oxidant effects appear to be responsible for the induction of apoptosis in tumor cells. These pro-oxidant effects may also induce endogenous antioxidant systems in normal tissues that offer protection against carcinogenic insult. This review is meant point out understudied areas and stimulate research on the topic with the hope that insights into the mechanisms of cancer preventive activity of tea polyphenols will result.
Lipid oxidation is important to food manufacturers especially when they increase unsaturated lipids in their products to improve nutritional profiles. Unfortunately, the number of antioxidants available to food manufacturers to control oxidative rancidity is limited and the approval of new antioxidants is unlikely due to economic barriers in obtaining government approval for new food additives. Therefore, new antioxidant technologies are needed for food oils. This paper reviews the current knowledge of lipid oxidation in foods with emphasis on how physical properties of food systems impact oxidation chemistry. In particular, the role of association colloids in bulk oils on lipid oxidation chemistry is discussed in an attempt to understand mechanisms of oxidation. Increasing the understanding of how physical properties impact lipid oxidation could lead to the development of novel antioxidant technologies that not only protect the oil against oxidation and increase shelf-life but also allow food manufacturers to include more nutritionally beneficial fatty acids in their products.
Proteins dispersed in the continuous phase of oil-in-water emulsions are capable of inhibiting lipid oxidation reactions. The antioxidant activity of these proteins is thought to encompass both free radical scavenging by amino acid residues and chelation of prooxidative transition metals; however, the precise mechanism by which this occurs remains unclear. In this study, the oxidative stability of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin (beta-Lg) in a Brij-stabilized menhaden oil-in-water emulsion was determined. The presence of low concentrations of continuous phase beta-Lg (250 and 750 microg/mL) significantly inhibited lipid oxidation as determined by lipid hydroperoxides and thiobarbituric acid reactive substances analysis. It was observed that cysteine oxidized before tryptophan in beta-Lg, and both residues oxidized before lipid oxidation could be detected. No oxidation of the methionine residues of beta-Lg was observed despite its reported high oxidative susceptibility. It is conceivable that surface exposure of amino acid residues greatly affects their oxidation kinetics, which may explain why some residues are preferentially oxidized relative to others. Further elucidation of the mechanisms governing free radical scavenging of amino acids could lead to more effective applications of proteins as antioxidants within oil-in-water food emulsions.
Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.