Conservation concerns and new management policies such as the implementation of ecosystem-based approaches to fisheries management are motivating an increasing need for estimates of mortality associated with commercial fishery discards and released fish from recreational fisheries. Traditional containment studies and emerging techniques using electronic tags on fish released to the wild are producing longitudinal mortality-time data from which discard or release mortalities can be estimated, but where there may also be a need to account analytically for other sources of mortality. In this study, we present theoretical and empirical arguments for a parametric mixture-distribution model for discard mortality data. We show, analytically and using case studies for Atlantic cod (Gadus morhua), American plaice (Hippoglossoides platessoides), and winter skate (Leucoraja ocellata), how this model can easily be generalized to incorporate different characteristics of discard mortality data such as distinct capture, post-release and natural mortalities, and delayed mortality onset. In simulations over a range of conditions, the model provided reliable parameter estimates for cases involving both discard and natural mortality. These results support this modelling approach, indicating that it is well suited for data from studies in which fish are released to their natural environment. The model was found to be less reliable in simulations when there was a delay in discard mortality onset, though such an effect appears only in a minority of existing discard mortality studies. Overall, the model provides a flexible framework in which to analyse discard mortality data and to produce reliable scientific advice on discard mortality rates and possibilities for mitigation.
Similar to other elasmobranchs, the smalltooth sawfish Pristis pectinata is slow growing, matures late in life, and produces relatively few young, all factors that have contributed to its sensitivity to dramatic population declines from overfishing and habitat loss. Currently, the physiological stress response of these fish to capture or to other physiological challenges such as habitat loss, climatic changes, or pollution is unknown. In the absence of these data, conservation plans may be less effective, making populations susceptible to further declines. We examined basic stress physiology over ontogeny and as a function of capture using different fishing gears. We also examined stress parameters to test whether degraded habitat and water quality from altered habitats may have resulted in chronic stress in juveniles. Results suggested that the stress response to capture by all methods was low, particularly for blood lactate, compared to other elasmobranchs examined to date. Metabolic stress was found to change over ontogeny, with young of the year (YOY) eliciting the highest responses. Glucose, pCO 2 , bicarbonate, potassium, and hematocrit indicated that gillnet capture induced greater stress responses than longline capture. Significantly higher metabolic stress was observed in YOY and juveniles captured in the 2 nurseries most influenced by anthropogenic activities, the Peace and Caloosahatchee rivers, than in the 2 relatively pristine nurseries in Everglades National Park. Overall, the low physiological stress responses to all capture methods investigated in this study suggest that this species is resilient, which should promote optimism for recovery of the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.