We hypothesized that changes in the mitochondrial DNA (mtDNA) would significantly influence whole body metabolism, adiposity and gene expression in response to diet. Because it is not feasible to directly test these predictions in humans we used Mitochondrial-Nuclear eXchange mice, which have reciprocally exchanged nuclear and mitochondrial genomes between different Mus musculus strains. Results demonstrate that nuclear-mitochondrial genetic background combination significantly alters metabolic efficiency and body composition. Comparative RNA sequencing analysis in adipose tissues also showed a clear influence of the mtDNA on regulating nuclear gene expression on the same nuclear background (up to a 10-fold change in the number of differentially expressed genes), revealing that neither Mendelian nor mitochondrial genetics unilaterally control gene expression. Additional analyses indicate that nuclear-mitochondrial genome combination modulates gene expression in a manner heretofore not described. These findings provide a new framework for understanding complex genetic disease susceptibility.
FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anti-cancer agent in multiple animal models. Our published work indicates that the anti-cancer effects of FTY720 do not depend on actions at S1P receptors, but instead stem from FTY720’s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720’s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.
FTY720 functions as an immunosuppressant due to its effect on sphingosine-1-phosphate receptors. At doses well above those needed for immunosuppression, FTY720 also has anti-neoplastic actions. Our published work suggests that at least some of FTY720’s anti-cancer activity is independent of its effects on S1P receptors and due instead to its ability to induce nutrient transporter down-regulation. Compounds that trigger nutrient transporter loss but lack FTY720’s S1P receptor-related, dose-limiting toxicity have the potential to be effective and selective anti-tumor agents. In this study, a series of enantiomerically pure and stereochemically diverse O-substituted benzyl ethers of pyrrolidines was generated and tested for the ability to kill human leukemia cells. The stereochemistry of the hydroxymethyl was found to be a key determinant of compound activity. Moreover, phosphorylation of this group was not required for anti-leukemic activity.
The frequency of poor outcomes in relapsed leukemia patients underscores the need for novel therapeutic approaches. The FDA-approved immunosuppressant FTY720 limits leukemia progression by activating protein phosphatase 2A and restricting nutrient access. Unfortunately, FTY720 cannot be re-purposed for use in cancer patients due to on-target toxicity associated with S1P receptor activation at the elevated, anti-neoplastic dose. Here we show that the constrained azacyclic FTY720 analog SH-RF-177 lacks S1P receptor activity but maintains anti-leukemic activity in vitro and in vivo. SH-RF-177 was not only more potent than FTY720, but killed via a distinct mechanism. Phosphorylation is dispensable for FTY720’s anti-leukemic actions. However, chemical biology and genetic approaches demonstrated that the sphingosine kinase 2- (SPHK2) mediated phosphorylation of SH-RF-177 led to engagement of a pro-apoptotic target and increased potency. The cytotoxicity of membrane-permeant FTY720 phosphonate esters suggests that the enhanced potency of SH-RF-177 stems from its more efficient phosphorylation. The tight inverse correlation between SH-RF-177 IC50 and SPHK2 mRNA expression suggests a useful biomarker for SH-RF-177 sensitivity. In summary, these studies indicate that FTY720 analogs that are efficiently phosphorylated but fail to activate S1P receptors may be superior anti-leukemic agents compared to compounds that avoid cardiotoxicity by eliminating phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.