Autonomous underwater vehicle measurements are used to quantify lateral dispersion of a continuously released Rhodamine WT dye plume within the stratified interior of shelf waters in northern Monterey Bay, California. The along-shelf evolution of the plume's cross-shelf (lateral) width provides evidence for scaledependent dispersion following the 4 /3 law, as previously observed in both surface and bottom layers. The lateral dispersion coefficient is observed to grow to 0.5 m 2 s 21 at a distance of 700 m downstream of the dye source. The role of shear and associated intermittent turbulent mixing within the stratified interior is investigated as a driving mechanism for lateral dispersion. Using measurements of time-varying temperature and horizontal velocities, both an analytical shear-flow dispersion model and a particle-tracking model generate estimates of the lateral dispersion that agree with the field-measured 4 /3 law of dispersion, without explicit appeal to any assumed turbulence structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.