Mechanisms underlying airway hyperresponsiveness are not yet fully elucidated. One of the manifestations of airway inflammation is leakage of diverse plasma proteins into the airway lumen. They include fibrinogen and thrombin. Thrombin cleaves fibrinogen to form fibrin, a major component of thrombi. Fibrin inactivates surfactant. Surfactant on the airway surface maintains airway patency by lowering surface tension. In this study, immunohistochemically detected fibrin was seen along the luminal surface of distal airways in a patient who died of status asthmaticus and in mice with induced allergic airway inflammation. In addition, we observed altered airway fibrinolytic system protein balance consistent with promotion of fibrin deposition in mice with allergic airway inflammation. The airways of mice were exposed to aerosolized fibrinogen, thrombin, or to fibrinogen followed by thrombin. Only fibrinogen followed by thrombin resulted in airway hyperresponsiveness compared with controls. An aerosolized fibrinolytic agent, tissue-type plasminogen activator, significantly diminished airway hyperresponsiveness in mice with allergic airway inflammation. These results are consistent with the hypothesis that leakage of fibrinogen and thrombin and their accumulation on the airway surface can contribute to the pathogenesis of airway hyperresponsiveness.
Rationale: Allergically inflamed mice exhibit airway hyperresponsiveness to inhaled methacholine, which computer simulations of lung impedance suggest is due to enhanced lung derecruitment and which we sought to verify in the present study. Methods: BALB/c mice were sensitized and challenged with ovalbumin to induce allergic inflammation; the control mice were sensitized but received no challenge. The mice were then challenged with inhaled methacholine and respiratory system impedance tracked for the following 10 minutes. Respiratory elastance (H ) was estimated from each impedance measurement. One group of mice was ventilated with 100% O 2 during this procedure and another group was ventilated with air. After the procedure, the mice were killed and ventilated with pure N 2 , after which the trachea was tied off and the lungs were imaged with micro-computed tomography (micro-CT).Results: H was significantly higher in allergic mice than in control animals after methacholine challenge. The ratio of H at the end of the measurement period between allergic and nonallergic mice ventilated with O 2 was 1.36, indicating substantial derecruitment in the allergic animals. The ratio between lung volumes determined by micro-CT in the control and the allergic mice was also 1.36, indicative of a corresponding volume loss due to absorption atelectasis. Micro-CT images and histograms of Hounsfield units from the lungs also showed increased volume loss in the allergic mice compared with control animals after methacholine challenge. Conclusions: These results support the conclusion that airway closure is a major component of hyperresponsiveness in allergically inflamed mice.Keywords: asthma; micro-computed tomography; input impedance; lung derecruitment; lung volume Different mechanisms can lead to airway hyperresponsiveness (AHR) in animal models, not all of which have equal relevance to human asthma. It is therefore crucial to elucidate the mechanistic basis of AHR in any given animal model of asthma to understand its relationship to the human condition. We recently reported that the response of acutely allergically inflamed BALB/c mice to challenge with methacholine aerosol is likely due entirely to enhanced closure of peripheral airways secondary to increased (Received in original form October 3, 2006; accepted in final form January 25, 2007 ) Supported by NIH grants R01 HL67273 and NCRR-COBRE P20 RR15557.Correspondence and requests for reprints should be addressed to Lennart K. AT A GLANCE COMMENTARY Scientific Knowledge on the SubjectAirway hyperresponsiveness in mouse models of asthma has traditionally been attributed to contraction of airway smooth muscle. Recent studies suggest, however, that airway closure may play a more significant role. What This Study Adds to the FieldUsing the forced oscillation technique and micro-computed tomography, we now show that airway hyperresponsiveness in allergic mice can be largely explained by airway closure.airway mucosal thickness and secretions (1). This stands in marked contras...
Pulmonary inflammation in asthma is orchestrated by the activity of NF-κB. NO and NO synthase (NOS) activity are important modulators of inflammation. The availability of the NOS substrate, l-arginine, is one of the mechanisms that controls the activity of NOS. Arginase also uses l-arginine as its substrate, and arginase-1 expression is highly induced in a murine model of asthma. Because we have previously described that arginase affects NOx content and interferes with the activation of NF-κB in lung epithelial cells, the goal of this study was to investigate the impact of arginase inhibition on the bioavailability of NO and the implications for NF-κB activation and inflammation in a mouse model of allergic airway disease. Administration of the arginase inhibitor BEC (S-(2-boronoethyl)-l-cysteine) decreased arginase activity and caused alterations in NO homeostasis, which were reflected by increases in S-nitrosylated and nitrated proteins in the lungs from inflamed mice. In contrast to our expectations, BEC enhanced perivascular and peribronchiolar lung inflammation, mucus metaplasia, NF-κB DNA binding, and mRNA expression of the NF-κB-driven chemokine genes CCL20 and KC, and lead to further increases in airways hyperresponsiveness. These results suggest that inhibition of arginase activity enhanced a variety of parameters relevant to allergic airways disease, possibly by altering NO homeostasis.
Airway hyperresponsiveness (AHR) is a defining feature of asthma. We have previously shown, in mice sensitized and challenged with antigen, that AHR is attributable to normal airway smooth muscle contraction with exaggerated airway closure. In the present study we sought to determine if the same was true for mice known to have intrinsic AHR, the genetic strain of mice, A/J. We found that A/J mice have AHR characterized by minimal increase in elastance following aerosolized methacholine challenge compared with mice (BALB/c) that have been antigen sensitized and challenged [concentration that evokes 50% change in elastance (PC(50)): 22.9 +/- 5.7 mg/ml for A/J vs. 3.3 +/- 0.4 mg/ml for antigen-challenged and -sensitized mice; P < 0.004]. Similar results were found when intravenous methacholine was used (PC(30) 0.22 +/- 0.08 mg/ml for A/J vs. 0.03 +/- 0.004 mg/ml for antigen-challenged and -sensitized mice). Computational model analysis revealed that the AHR in A/J mice is dominated by exaggerated airway smooth muscle contraction and that when the route of methacholine administration was changed to intravenous, central airway constriction dominates. Absorption atelectasis was used to provide evidence of the lack of airway closure in A/J mice. Bronchoconstriction during ventilation with 100% oxygen resulted in a mean 9.8% loss of visible lung area in A/J mice compared with 28% in antigen-sensitized and -challenged mice (P < 0.02). We conclude that the physiology of AHR depends on the mouse model used and the route of bronchial agonist administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.