Steroid hormones can modulate motivated behaviors through the mesocorticolimbic system. Gonadectomy (GDX) is a common method to determine how steroids influence the mesocorticolimbic system, and caloric restriction (CR) is often used to invigorate motivated behaviors. A common assumption is that the effects of these manipulations on brain steroid levels reflects circulating steroid levels. We now know that the brain regulates local steroid levels in a region-specific manner; however, previous studies have low spatial resolution. Using ultrasensitive liquid chromatography tandem mass spectrometry, we examined steroids in microdissected regions of the mesocorticolimbic system (ventral tegmental area, nucleus accumbens, medial prefrontal cortex). We examined whether GDX or CR influences systemic and local steroids, particularly testosterone (T) and steroidogenic enzyme transcripts. Adult male rats underwent a GDX surgery and/or CR for either 2 or 6 weeks. Levels of T, the primary steroid of interest, were higher in all brain regions than in the blood, whereas corticosterone (CORT) was lower in the brain than in the blood. Importantly, GDX completely eliminated T in the blood and lowered T in the brain. Yet, T remained present in the brain, even 6 weeks after GDX. CR decreased both T and CORT in the blood and brain. Steroidogenic enzyme (Cyp17a1, 3β-hydroxysteroid dehydrogenase, aromatase) transcripts and androgen receptor transcripts were expressed in the mesocorticolimbic system and differentially affected by GDX and CR. Together, these results suggest that T is synthesized within the mesocorticolimbic system. These results provide a foundation for future studies examining how neurosteroids influence behaviors mediated by the mesocorticolimbic system.
In females, a hallmark of puberty is the luteinizing hormone (LH) surge that triggers ovulation. Puberty initiates estrogen positive feedback onto hypothalamic circuits, which underlie the stimulation of gonadotropin releasing hormone (GnRH) neurons. In reproductively mature female rodents, both estradiol (E2) and progesterone (P4) signaling are necessary to stimulate the surge release of GnRH and LH. Estradiol membrane-initiated signaling facilitates progesterone (neuroP) synthesis in hypothalamic astrocytes, which act on E2-induced progesterone receptors (PGR) to stimulate kisspeptin release, thereby activating GnRH release. How the brain changes during puberty to allow estrogen positive feedback remains unknown. In the current study, we hypothesized that a critical step in estrogen positive feedback was the ability for estradiol-induced neuroP synthesis. To test this idea, hypothalamic neuroP levels were measured in groups of prepubertal, pubertal and young adult female Long Evans rats. Steroids were measured with liquid chromatography tandem mass spectrometry (LC-MS/MS). Hypothalamic neuroP increases from pre-puberty to young adulthood in both gonad-intact females and ovariectomized rats treated with E2. The pubertal development of hypothalamic E2-facilitated progesterone synthesis appears to be one of the neural switches facilitating reproductive maturation.
We must often decide how much effort to exert or withhold to avoid undesirable outcomes or obtain rewards. In depression and anxiety, levels of avoidance can be excessive and reward-seeking may be reduced. Yet outstanding questions remain about the links between motivated action/inhibition and anxiety and depression levels, and whether they differ between men and women. Here we examined the relationship between anxiety and depression scores, and performance on effortful active and inhibitory avoidance (Study 1) and reward seeking (Study 2) in humans. Undergraduates and paid online workers (NAvoid= 545,NReward= 310;NFemale= 368,NMale= 450,MAge= 22.58,RangeAge= 17-62) were assessed on the Beck Depression Inventory II (BDI) and the Beck Anxiety Inventory (BAI) and performed an instructed online avoidance or reward-seeking task. Participants had to make multiple presses on active trials and withhold presses on inhibitory trials to avoid an unpleasant sound (Study 1) or obtain points towards a monetary reward (Study 2). Overall, men deployed more effort than women in both avoidance and reward-seeking, and anxiety scores were negatively associated with active reward-seeking performance based on sensitivity scores. Gender interacted with anxiety scores and inhibitory avoidance performance, such that women with higher anxiety showed worse avoidance performance. Our results illuminate effects of gender in the relationship between anxiety and depression levels and the motivation to actively and effortfully respond to obtain positive and avoid negative outcomes.Significance statementWe must often take or withhold effortful action to avoid unpleasant outcomes or obtain rewards. Depression and anxiety can impact these behaviours’ effectiveness, but the roles of avoidance in depression and reward-seeking in anxiety are not fully understood. Gender differences in avoidance and reward-seeking have also not been examined. We present a task in which community participants with a range of anxiety and depression levels made or withheld button presses to avoid hearing an unpleasant sound or obtain a reward. Men deployed more effort than women in avoidance, and women with higher anxiety scores had lower avoidance performance than men. We illuminate gender differences in how depressive and anxiety scores impact our ability to avoid threats and obtain rewards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.