Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK), a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the gamma subunit (AMPKγ) and through expression of a dominant negative alpha (AMPKα) variant in Drosophila melanogaster. Reduced AMPK signaling leads to hypersensitivity to starvation conditions as measured by lifespan and locomotor activity. Locomotor levels in flies with reduced AMPK function were lower during unstressed conditions, but starvation-induced hyperactivity, an adaptive response to encourage foraging, was significantly higher than in wild type. Unexpectedly, total dietary intake was greater in animals with reduced AMPK function yet total triglyceride levels were lower. AMPK mutant animals displayed starvation-like lipid accumulation patterns in metabolically key liver-like cells, oenocytes, even under fed conditions, consistent with a persistent starved state. Measurements of O2 consumption reveal that metabolic rates are greater in animals with reduced AMPK function. Lastly, rapamycin treatment tempers the starvation sensitivity and lethality associated with reduced AMPK function. Collectively, these results are consistent with models that AMPK shifts energy usage away from expenditures into a conservation mode during nutrient-limited conditions at a cellular level. The highly conserved AMPK subunits throughout the Metazoa, suggest such findings may provide significant insight for pharmaceutical strategies to manipulate AMPK function in humans.
Recovery from major depressive disorder is difficult, particularly in patients who are refractory to antidepressant treatments. To examine factors that regulate recovery, we developed a prolonged learned helplessness depression model in mice. After the induction of learned helplessness, mice were separated into groups that recovered or did not recover within 4 weeks. Comparisons were made between groups in hippocampal proteins, inflammatory cytokines, and blood brain barrier (BBB) permeability. Compared with mice that recovered and control mice, non-recovered mice displaying prolonged learned helplessness had greater hippocampal activation of glycogen synthase kinase-3 (GSK3), higher levels of tumor necrosis factor-α (TNFα), interleukin-17A, and interleukin-23, increased permeability of the blood brain barrier (BBB), and lower levels of the BBB tight junction proteins occludin, ZO1, and claudin-5. Treatment with the GSK3 inhibitor TDZD-8 reduced inflammatory cytokine levels, increased tight junction protein levels, and reversed impaired recovery from learned helplessness, demonstrating that prolonged learned helplessness is reversible and is maintained by abnormally active GSK3. In non-recovered mice with prolonged learned helpless, stimulation of sphingosine 1-phosphate receptors by Fingolimod or administration of the TNFα inhibitor etanercept repaired the BBB and reversed impaired recovery from prolonged learned helplessness. Thus, disrupted BBB integrity mediated in part by TNFα contributes to blocking recovery from prolonged learned helplessness depression-like behavior. Overall, this report describes a new model of prolonged depression-like behavior and demonstrates that stress-induced GSK3 activation contributes to disruption of BBB integrity mediated by inflammation, particularly TNFα, which contributes to impaired recovery from prolonged learned helplessness.
Psychological stress has a pervasive influence on our lives. In many cases adapting to stress strengthens organisms, but chronic or severe stress is usually harmful. One surprising outcome of psychological stress is activation of an inflammatory response, resembling inflammation caused by infection or trauma. Excessive psychological stress and the consequential inflammation in the brain can increase susceptibility to psychiatric diseases, such as depression, and impair learning and memory, including in some patients with cognitive deficits. An emerging target to control detrimental outcomes of stress and inflammation is glycogen synthase kinase-3 (GSK3). GSK3 promotes inflammation, partly by regulating key transcription factors in the inflammation signaling pathway, and GSK3 can impair learning by promoting inflammation and by inhibiting long term potentiation (LTP). Drugs inhibiting GSK3 may prove beneficial for controlling mood and cognitive impairments caused by excessive stress and the associated neuroinflammation.
Major depressive disorder (MDD) is a prevalent and debilitating disorder, often fatal. Treatment options are few and often do not provide immediate relief to the patients. The increasing involvement of inflammation in the pathology of MDD has provided new potential therapeutic avenues. Cytokine levels are elevated in the blood and cerebrospinal fluid of MDD patients whereas immune cells often exhibit an immunosuppressed phenotype in MDD patients. Blocking cytokine actions in patients exhibiting MDD show some antidepressant efficacy. However, the role of cytokines, and the immune response in MDD patients remain to be determined. We reviewed here the roles of the innate and adaptive immune systems in MDD, as well as potential mechanisms whereby the immune response might be regulated in MDD.
Background: Major depressive disorder is a widespread mood disorder. One of the most debilitating symptoms patients often experience is cognitive impairment. Recent findings suggest that inflammation is associated with depression and impaired cognition. Pro-inflammatory cytokines are elevated in the blood of depressed patients and impair learning and memory processes, suggesting that an anti-inflammatory approach might be beneficial for both depression and cognition. Methods: We subjected mice to the learned helplessness paradigm and evaluated novel object recognition and spatial memory. Mice were treated with IL-10 intranasally or/and microglia cells were depleted using PLX5622. Statistical differences were tested using ANOVA or t tests. Results: We first established a mouse model of depression in which learning and memory are impaired. We found that learned helplessness (LH) impairs novel object recognition (NOR) and spatial working memory. LH mice also exhibit reduced hippocampal dendritic spine density and increased microglial activation compared to non-shocked (NS) mice or mice that were subjected to the learned helpless paradigm but did not exhibit learned helplessness (non-learned helpless or NLH). These effects are mediated by microglia, as treatment with PLX5622, which depletes microglia, restores learning and memory and hippocampal dendritic spine density in LH mice. However, PLX5622 also impairs learning and memory and reduces hippocampal dendritic spine density in NLH mice, suggesting that microglia in NLH mice produce molecules that promote learning and memory. We found that microglial interleukin (IL)-10 levels are reduced in LH mice, and IL-10 administration is sufficient to restore NOR, spatial working memory, and hippocampal dendritic spine density in LH mice, and in NLH mice treated with PLX5622 consistent with a procognitive role for IL-10. Conclusions: Altogether these data demonstrate the critical role of IL-10 in promoting learning and memory after learned helplessness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.