Epigenetic mechanisms by which cells inherit information are, to a large extent, enabled by DNA methylation and posttranslational modifications of histone proteins. These modifications operate both to influence the structure of chromatin per se and to serve as recognition elements for proteins with motifs dedicated to binding particular modifications. Each of these modifications results from an enzyme that consumes one of several important metabolites during catalysis. Likewise, the removal of these marks often results in the consumption of a different metabolite. Therefore, these so-called epigenetic marks have the capacity to integrate the expression state of chromatin with the metabolic state of the cell. This review focuses on the central roles played by acetyl-CoA, S-adenosyl methionine, NAD+, and a growing list of other acyl-CoA derivatives in epigenetic processes. We also review how metabolites that accumulate as a result of oncogenic mutations are thought to subvert the epigenetic program.
African American patients with colorectal cancer show higher mortality than their Caucasian counterparts. Biology might play a partial role, and prior studies suggest a higher prevalence for microsatellite instability (MSI) among cancers from African Americans, albeit patients with MSI cancers have improved survival over patients with non-MSI cancers, counter to the outcome observed for African American patients. CD8+ T cell infiltration of colon cancer is postively correlated with MSI tumors, and is also related to improved outcome. Here, we utilized a 503-person, population-based colon cancer cohort comprising 45% African Americans to determine, under blinded conditions from all epidemiological data, the prevalence of MSI and associated CD8+ T cell infiltration within the cancers. Among Caucasian cancers, 14% were MSI, whereas African American cancers demonstrated 7% MSI (P = 0.009). Clinically, MSI cancers between races were similar; among microsatellite stable cancers, African American patients were younger, female, and with proximal cancers. CD8+ T cells were higher in MSI cancers (88.0 vs 30.4/hpf, P<0.0001), but was not different between races. Utilizing this population-based cohort, African American cancers show half the MSI prevalence of Caucasians without change in CD8+ T cell infiltration which may contribute towards their higher mortality from colon cancer.
In , heterochromatin structures required for transcriptional silencing of the and loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of and are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of and through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of and through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.