Specialized secretion systems of bacteria evolved for selective advantage, either killing microbial competitors or implementing effector functions during parasitism. Earlier work characterized the ESAT-6 secretion system (ESS) of Staphylococcus aureus and demonstrated its contribution to persistent staphylococcal infection of vertebrate hosts. Here, we identify a novel secreted effector of the ESS pathway, EssD, that functions as a nuclease and cleaves DNA but not RNA. EssI, a protein of the DUF600 family, binds EssD to block its nuclease activity in the staphylococcal cytoplasm. An essD knockout mutant or a variant lacking nuclease activity, essD L546P , elicited a diminished interleukin-12 (IL-12) cytokine response following bloodstream infection of mice, suggesting that the effector function of EssD stimulates immune signaling to support the pathogenesis of S. aureus infections. IMPORTANCE Bacterial type VII or ESAT-6-like secretion systems (ESS) may have evolved to modulate host immune responses during infection, thereby contributingto the pathogenesis of important diseases such as tuberculosis and methicillinresistant S. aureus (MRSA) infection. The molecular mechanisms whereby type VII secretion systems achieve their goals are not fully elucidated as secreted effectors with biochemical functions have heretofore not been identified. We show here that MRSA infection relies on the secretion of a nuclease effector that cleaves DNA and contributes to the stimulation of IL-12 signaling during infection. These results identify a biological mechanism for the contribution of the ESS pathway toward the establishment of MRSA disease.
Staphylococcus aureus, an invasive pathogen of humans and animals, requires a specialized ESS pathway to secrete proteins (EsxA, EsxB, EsxC, and EsxD) during infection. Expression of ess genes is required for S. aureus establishment of persistent abscess lesions following bloodstream infection; however, the mechanisms whereby effectors of the ESS pathway implement their virulence strategies were heretofore not known. Here, we show that EssE forms a complex with other members of the ESS secretion pathway and its substrates, promoting the secretion of EsxA, EsxB, EsxC, EsxD, and EssD. During bloodstream infection of mice, the S. aureus essE mutant displays defects in host cytokine responses, specifically in the production of interleukin-12 (IL-12) (p40/p70) and the suppression of RANTES (CCL5), activators of T H 1 T cell responses and immune cell chemotaxis, respectively. Thus, essE-mediated secretion of protein effectors via the ESS pathway may enable S. aureus to manipulate host immune responses by modifying the production of cytokines.IMPORTANCE Staphylococcus aureus and other firmicutes evolved a specialized ESS (EsxA/ESAT-6-like secretion system) pathway for the secretion of small subsets of proteins lacking canonical signal peptides. The molecular mechanisms for ESSdependent secretion and their functional purpose are still unknown. We demonstrate here that S. aureus EssE functions as a membrane assembly platform for elements of the secretion machinery and their substrates. Furthermore, S. aureus EssEmediated secretion contributes to the production or the suppression of specific cytokines during host infection, thereby modifying immune responses toward this pathogen.
The ESAT6-like secretion system (ESS) of promotes effector protein transport across the bacterial envelope. Genes in the ESS cluster are required for establishment of persistent abscess lesions and the modulation of immune responses during bloodstream infections. However, the biochemical functions of most of the ESS gene products, specifically the identity of secretion machine components, are unknown. Earlier work demonstrated that deletion of , which encodes a membrane protein, abolishes ESS secretion. Loss-of-function mutations truncating the gene product cause dominant-negative phenotypes on ESS secretion, suggesting that EssB is a central component of the secretion machinery. To test this prediction, we purified native and affinity-tagged EssB from staphylococcal membranes via dodecyl-maltoside extraction, identifying a complex assembled from five proteins, EsaA, EssA, EssB, EssD, and EsxA. All five proteins are essential for secretion, as knockout mutations in the corresponding genes abolish ESS transport. Biochemical and bacterial two-hybrid analyses revealed a direct interaction between EssB and EsaA that, by engaging a mobile machine component, EsxA, may also recruit EssA and EssD. Type VII secretion systems support the lifestyle of Gram-positive bacteria, including important human pathogens such as ,, and Genes encoding SpoIIIE-FtsK-like ATPases and WXG100-secreted products are conserved features of type VII secretion pathways; however, most of the genes in T7SS clusters are not conserved between different bacterial species. Here, we isolate a complex of proteins from the membranes of that appears to represent the core secretion machinery, designated ESS. These results suggest that three membrane proteins, EsaA, EssB, and EssA, form a secretion complex that associates with EssC, the SpoIIIE-FtsK-like ATPase, and with EsxA, a mobile machine component and member of the WXG100 protein family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.