We describe the use of iterative in situ click chemistry to design an Akt-specific branched peptide triligand that is a drop-in replacement for monoclonal antibodies in multiple biochemical assays. Each peptide module in the branched structure makes unique contributions to affinity and/or specificity resulting in a 200 nM affinity ligand that efficiently immunoprecipitates Akt from cancer cell lysates and labels Akt in fixed cells. Our use of a small molecule to pre-inhibit Akt prior to screening resulted in low micromolar inhibitory potency and an allosteric mode of inhibition, which is evidenced through a series of competitive enzyme kinetic assays. To demonstrate the efficiency and selectivity of the protein-templated in situ click reaction, we developed a novel QPCR-based methodology that enabled a quantitative assessment of its yield. These results point to the potential for iterative in situ click chemistry to generate potent, synthetically accessible antibody replacements with novel inhibitory properties
Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry we recently developed multiple protein catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein based assay. Here we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare Proteolysis Targeting Chimeric molecules (PROTACs) that are shown to promote the rapid degradation of Akt in live cancer cells. These novel PROTACs demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets.
Recent work identified L-asparaginase (L-ASP) as a putative therapeutic target for ovarian cancer. We hypothesized L-ASP, a dysregulator of glycosylation, would interrupt the local microenvironment, affecting the ovarian cancer cell—endothelial cell interaction and thus angiogenesis without cytotoxic effects. Ovarian cancer cell lines and human microvascular endothelial cells (HMVEC) were exposed to L-ASP at physiologically attainable concentrations and subjected to analyses of endothelial tube formation, invasion, adhesion, and the assessment of sialylated proteins involved in matrix-associated and heterotypic cell adhesion. Marked reduction in HMVEC tube formation in vitro, HMVEC and ovarian cancer cell invasion, and heterotypic cell-cell and cell-matrix adhesion was observed (p<0.05 – 0.0001). These effects were associated with reduced binding to ß1integrin, activation of FAK, and cell surface sialyl LewisX (sLex) expression. No reduction in HMVEC E-selectin expression was seen consistent with the unidirectional inhibitory actions observed. L-ASP concentrations were non-toxic to either ovarian cancer or HMVEC lines in the time frame of the assays. However, early changes of autophagy were observed in both cell types with induction of ATG12, beclin-1, and cleavage of LC-3, indicating cell injury did occur. These data and the known mechanism of action of L-ASP on glycosylation of nascent proteins suggest that L-ASP reduction of ovarian cancer dissemination and progression through modification of its microenvironment. The reduction of ovarian cancer cell surface sLex inhibits interaction with HMVEC and thus HMVEC differentiation into tubes, inhibits interaction with the local matrix reducing invasive behavior, and causes cell injury initiating autophagy in tumor and vascular cells.
BACKGROUND: Ovarian cancer cells in malignant effusions lack attachment to solid-phase matrix substrata and receive survival stimuli through cell-cell and cell-soluble matrix molecule interactions. We hypothesized that adhesion-related survival and proliferation pathway signals can inform clinical outcomes and guide targeted therapeutics. METHODS: Lysed cell pellets from a blinded set of benign (n ¼ 20) and malignant (n ¼ 51) peritoneal and pleural ovarian cancer patient effusions were applied to reverse-phase protein arrays and examined using validated antibodies to adhesion-associated protein endpoints. Results were subjected to hierarchical clustering for signature development. Association between specimen type, protein expression, and clinicopathologic associations were analyzed using the Mann-Whitney U test. Survival outcomes were estimated using the Kaplan-Meier method with log-rank comparison. RESULTS: A cell adhesion protein signature obtained from unsupervised clustering distinguished malignant from benign effusions (P ¼ 6.18E-06). Protein subset analyses from malignant cases defined 3 cell adhesion protein clusters driven by E-cadherin, epithelial cell adhesion molecule, and N-cadherin, respectively. The components of the E-and N-cadherin clusters correlated with clinical outcome by Kaplan-Meier statistics. Univariate analysis indicated that FAK and phosphorylated AKT were associated with higher overall and progression-free survival (PFS) (P ¼ .03), and Akt, phosphorylated paxillin, and E-and N-cadherin were associated with improved PFS (P .05). If 4 or 5 of the index adhesion proteins were high, PFS was improved by multivariate analysis (P .01). CONCLUSIONS: This hypothesis-testing examination of tumor cell adhesion molecules and pathways yielded potential predictive biomarkers with which to triage patients to selected molecular therapeutics and may serve as a platform for biomarker-based stratification for clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.