Young-of-the-year (YOY) and juvenile-stage white sharks may use southern California nearshore beach habitats more extensively than previously known, within meters of some of the most heavily used beaches in the world. Such knowledge forms a critical component of species management and conservation plans, in addition to public safety and risk mitigation planning. We used data derived from a combination of satellite tag locations (13 animals over 3 years) and passive acoustic monitoring (34 animals over 8 years) to examine the occurrence, relative abundance, and residency patterns of YOY white sharks in southern California waters. Our results suggest that southern California contains spatiotemporally dynamic centers of primary nursery habitat. Tagged YOY white sharks formed loose aggregations at “hotspot” locations that were interannually variable, where individuals exhibited temporal fidelity, higher levels of residency, and spatially restricted movements, with multiple YOY individuals simultaneously displaying this behavior. While models of biotic and abiotic variables suggested relative abundance of tagged sharks may be predicted by sea surface temperature, salinity and productivity (chlorophyll-A), these predictors were not consistent across all years of the study. Thus, novel approaches that incorporate technologies to derive high resolution environmental data, paired with more comprehensive telemetry datasets are therefore required to better understand the extrinsic factors that drive habitat selection and residency patterns in juvenile white sharks.
Upper trophic level predators dramatically impacted by fisheries include the large-bodied hammerhead sharks, which have become species of conservation concern worldwide. Implementing spatial management for conservation of hammerhead populations requires knowledge of temporal distribution patterns and habitat use, identification of essential habitat for protection, and quantification of interactions with human activities. There is little such information for the smooth hammerhead shark, Sphyrna zygaena. We used fin-mounted satellite tags to examine the movements and habitat use of juvenile smooth hammerheads, a demographic segment particularly threatened by exploitation. Six sharks were tagged off the US mid-Atlantic and tracked for 49-441 days (mean 187 ± 136 days). Sharks consistently showed area-restricted movements within a summer core area in waters of the New York Bight and a winter core area off Cape Hatteras, North Carolina, with directed movements between them in autumn. There was high overlap of shark winter core area use and the Mid-Atlantic Shark Area (MASA)-a 7 month per year, bottom-longline fishery closure-indicating that this area closure offers seasonal reduction in fishing pressure for this species. Based on timing of shark movements and the MASA closure, protection for juvenile smooth hammerheads may be increased by beginning the closure period 1 month earlier than currently scheduled. Generalized additive mixed models revealed that area-restricted movements of sharks in their summer and winter core areas coincided with high primary productivity, and elevated sea surface temperature. Consistency in use of summer and winter core areas suggests that the coastal waters of the New York Bight and Cape Hatteras, North Carolina could be considered for Essential Fish Habitat designation for this species. This study reveals the first high resolution movements and habitat use for smooth hammerheads in the western North Atlantic to inform management planning for this population.
Many terrestrial and aquatic taxa are known to form periodic aggregations, whether across life history or solely during specific life stages, that are generally governed by the availability and distribution of resources. Associations between individuals during such aggregation events are considered random and not driven by social attraction or underlying community structure. White sharks (Carcharodon carcharias) have been described as a species that exhibits resource-driven aggregative behaviors across ontogenetic stages and juvenile white sharks are known to form aggregations at specific nursery sites where individuals may remain for extended periods of time in the presence of other individuals. We hypothesized juvenile white sharks form distinct communities during these critical early phases of ontogeny and discuss how a tendency to co-occur across life stages may be seeded by the formation of these communities in early ontogeny. We present results from a series of social network analyses of 86 juvenile white sharks derived from 6 years of passive acoustic telemetry data in southern California, demonstrating the likelihood of association of tagged juvenile white sharks is greater when sharks are of similar size-classes. Individuals in observed networks exhibited behaviors that best approximated fission-fusion dynamics with spatiotemporally unstable group membership. These results provide evidence of possible non-resource driven co-occurrence and community structure in juvenile white sharks during early life stages.
Recreational fisheries in the Eastern Tropical Pacific (ETP) have increased in popularity since the 1970s, contributing to the eco-tourism industries of many Central American economies. However, pelagic gamefish face several direct and indirect threats which can affect population health and sustainability. We use daily catch logs from three recreational fishing lodges in Guatemala, Costa Rica, and Panama as records of change in blue marlin (Makaira nigricans) and sailfish (Istiophorus platypterus) sightings per unit effort (SPUE) between 2010 and 2019. Using cross-correlational analysis, we compared billfish SPUE to the El Niño Southern Oscillation (ENSO) Index and local oceanographic conditions (sea surface temperature [SST] and chlorophyll [chl a]) to understand how billfish availability to recreational fishers is related to environmental conditions at different time lags. Blue marlin occurrence was negatively correlated with the ENSO at time lags of 9-22 months in Guatemala and Costa Rica, while sailfish occurrence was positively correlated with ENSO at time lags of 5-10 months in all three regions. Cross-correlations with local SST were similar to ENSO patterns; however, results were unclear and nonsignificant for local chl a. By comparing recreational fisher SPUE to reported catch per unit effort (CPUE) of these two species by the international longline and purse seine fisheries, we show possible offshore movement of fish stocks during the 2016 warming event. Recreational fishing records provide an alternative way to monitor the occurrence of targeted fish species. By determining correlations of these species to environmental conditions, we begin to distinguish the effects of natural variability in the environment, from direct anthropogenic impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.