A B S T R A C TThis paper describes a method to characterize the structure of polytetrafluoroethylene (PTFE) treated gas diffusion layers (GDLs) with and without microporous layers (MPLs) using 3D X-ray micro computed tomographic (mCT) microscopy. In this work, the structure of single and dual layer GDLs is evaluated via mCT for various GDL samples (such as Toray TGP-H-060 and AvCarb EP40) loaded with different MPLs. A new method is presented for separating, or segmenting, the various phases of the GDL, i.e., void space, carbon fiber (including binder and PTFE), and MPL. Through analysis, it was found that the variation in bulk porosity and the average pore diameter of the GDLs depends highly on the GDL series manufacturing and treatment processes. Using advanced image analysis techniques, routines were developed to accurately segment the GDL fibers (including binder/PTFE) and the MPL. The percentage of the intruding MPL material into the carbon fiber paper as a function of the GDL thickness was successfully found for dual layer GDLs, with varying PTFE content and areal weight loading in the MPL. This analysis provides invaluable insight into the physical microstructure of paper-based GDLs, emphasizing the heterogeneous porosity distribution of single layer GDLs and the interaction of the MPL with the carbon fiber paper of dual layer GDLs.
The impedance characteristics of proton exchange membrane (PEM) fuel cells are studied and analyzed in this thesis. The modeling approaches presented in literature are thoroughly reviewed and categorized as the measurement-modeling and process-modeling approaches. In the former category, a hypothetical equivalent circuit which has the impedance characteristics similar to measured impedances is presented. Since the equivalent circuit is not directly resulted from the physical and chemical properties of the PEM fuel cells, the majority of the measurementmodeling approaches lead to dubious conclusions. In the process-modeling approach, on the other hand, the governing equations of the fuel cell must analytically be solved to determine and the impedance. However, a few process-modeling approaches presented in literature have shown to be indirectly based on the same assumptions as the measurement-modeling approach, and hence, those can also lead to similar conclusions. Therefore, these process-modeling approaches are referred to as the semi-process models here.In this thesis, the first complete process model for PEM fuel cells is presented which is not based on the above-mentioned assumptions. For each source of the losses in the fuel cell (i.e., the ohmic, activation and concentration overpotentials), a process model and equivalent circuit are obtained and compared against the impedance measurements reported in literature. The complete model (obtained by combining the models of the three losses) is then verified against the impedances measured in different operating conditions. Using the verified model, the measured Nyquist plots of the PEM fuel cells reported in literature are categorized. As a result, the dominant physical and chemical parameters controlling various arcs of the Nyquist plot are determined. Finally, the sensitivity analysis of the impedance characteristics of fuel cells is conducted using the verified model. As a result of this analysis, a minimum change in the operating conditions which results in statistically different Nyquist plots are determined.Finally, as an application of the model presented here, the impedance of the cell in the anode and cathode starvation modes are studied. It is shown that the anode starvation cannot be recognized from the impedance measurements, as predicted by the model. iii Preface This research was conducted in the Advanced Thermo-Fluidic Laboratory (ATFL) at University of British Columbia, Okanagan campus, under supervision of Dr. Mina Hoorfar. The results of this research have been published in several peer-reviewed journal articles and conference proceedings. Chapter 1 includes the discussions published as a review journal article (S.M. Rezaei Niya, M. Hoorfar (2013) 'Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique -A review ', Journal of Power Sources, Vol. 240, and also a journal article discussing the details of the process modeling approach (S.M. Rezaei Niya, M.Hoorfar (2015) 'Measurement, semi-process and pr...
The sensitivity of the impedance characteristics to the operating conditions of the proton exchange membrane fuel cell is studied. The impedance of a cell is measured in different potentials (current densities), operating temperatures, and anode and cathode relative humidities to estimate the indifference interval of each of these parameters. The indifference interval of a parameter, defined for a specific point, refers to a range out of which the impedance results are statistically dissimilar from that specific point. The analysis presented evaluates the average indifference intervals of the potential, temperature and relative humidities to be 10 mV, 5 °C and 7%, respectively. In other words, the changes less than the above mentioned limits do not affect the impedance of the cell statistically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.