Geologic carbon sequestration is the process of injecting and storing CO2 in subsurface reservoirs and is an essential technology for global environmental security (e.g., climate change mitigation) and economic security...
Energy system planning tools suggest that the cost and feasibility of climate-stabilizing energy transitions are sensitive to the cost of CO2 capture and storage processes (CCS), but the representation of CO2 transportation and geologic storage in these tools is often simple or non-existent. We develop the capability of producing dynamic-reservoir-simulation-based geologic CO2 storage supply curves with the Sequestration of CO2 Tool (SCO2T) and use it with the ReEDS electric sector planning model to investigate the effects of CO2 transportation and geologic storage representation on energy system planning tool results. We use a locational case study of the Electric Reliability Council of Texas (ERCOT) region. Our results suggest that the cost of geologic CO2 storage may be as low as $3/tCO2 and that site-level assumptions may affect this cost by several dollars per tonne. At the grid level, the cost of geologic CO2 storage has generally smaller effects compared to other assumptions (e.g., natural gas price), but small variations in this cost can change results (e.g., capacity deployment decisions) when policy renders CCS marginally competitive. The cost of CO2 transportation generally affects the location of geologic CO2 storage investment more than the quantity of CO2 captured or the location of electricity generation investment. We conclude with a few recommendations for future energy system researchers when modeling CCS. For example, assuming a cost for geologic CO2 storage (e.g., $5/tCO2) may be less consequential compared to assuming free storage by excluding it from the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.