Summary
Studies examining the mechanisms by which the liver injures and regenerates usually focus on factors and pathways within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Via the gut-liver axis, this complex “soup” exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years that have demonstrated the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Despite many correlative findings, the intricate networks of pathways involved along with a scarcity of mechanistic data urgently require nutrigenomic, metabolomics, and microbiota profiling approaches to provide a deep understanding of the interplay between nutrition, bacteria, and host response. Such knowledge would better elucidate the molecular mechanisms that link microbiota alteration to host physiological response and vice-versa.
Bile acids (BAs) are endogenous agents capable of causing cancer throughout the gastrointestinal (GI) tract. To uncover the mechanism by which BAs exert carcinogenic effects, both human liver and colon cancer cells as well as mouse primary hepatocytes were treated with BAs and assayed for viability, genotoxic stress, and transcriptional response. BAs induced both Nur77 (NR4A1) and pro-inflammatory gene expression. The intracellular location of BA-induced Nur77 was time-dependent; short-term (1–3 h) exposure induced nuclear Nur77 whereas longer (1–2 days) exposure also increased cytosolic Nur77 expression and apoptosis. Inhibiting Nur77 nuclear export with leptomycin B decreased LCA-induced apoptosis. Extended (7 days) treatment with BA generated resistance to BA with increased nuclear Nur77, viability, and mobility. While, knockdown of Nur77 in BA-resistant cells increased cellular susceptibility to LCA-induced apoptosis. Moreover, in vivo mouse xenograft experiments demonstrated that BA-resistant cells form larger tumors with elevated Nur77 expression compared to parental controls. DNA-binding and gene expression assays identified multiple survival genes (CDK4, CCND2, MAP4K5, STAT5A, and RBBP8) and a pro-apoptosis gene (BID) as Nur77 targets. Consistently, BA-induced up-regulation of the aforementioned genes was abrogated by a lack of Nur77. Importantly, Nur77 was overexpressed in high percentage of human colon and liver cancer specimens and the intracellular location of Nur77 correlated with elevated serum total BA levels in colon cancer patients. These data show for the first time that BAs via Nur77 have a dual role in modulating cell survival and death.
Implications: These findings establish a direct link between Nur77 and the carcinogenic effect of bile acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.