Spinal muscular atrophy (SMA), a
rare neuromuscular disorder, is
the leading genetic cause of death in infants and toddlers. SMA is
caused by the deletion or a loss of function mutation of the survival
motor neuron 1 (SMN1) gene. In humans, a second closely related gene
SMN2 exists; however it codes for a less stable SMN protein. In recent
years, significant progress has been made toward disease modifying
treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we
describe the discovery of LMI070/branaplam, a small molecule that
stabilizes the interaction between the spliceosome and SMN2 pre-mRNA.
Branaplam (1) originated from a high-throughput phenotypic
screening hit, pyridazine 2, and evolved via multiparameter
lead optimization. In a severe mouse SMA model, branaplam treatment
increased full-length SMN RNA and protein levels, and extended survival.
Currently, branaplam is in clinical studies for SMA.
Synthetic studies of the antimicrobial secondary metabolite thiomuracin A (1) provided access to analogues in the Northern region (C2-C10). Selective hydrolysis of the C10 amide of lead compound 2 and subsequent derivatization led to novel carbon- and nitrogen-linked analogues (e.g., 3) which improved antibacterial potency across a panel of Gram-positive organisms. In addition, congeners with improved physicochemical properties were identified which proved efficacious in murine sepsis and hamster C. difficile models of disease. Optimal efficacy in the hamster model of C. difficile was achieved with compounds that possessed both potent antibacterial activity and high aqueous solubility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.