We establish combinatorial versions of various classical systolic inequalities. For a smooth triangulation of a closed smooth manifold, the minimal number of edges in a homotopically non-trivial loop contained in the 1-skeleton gives an integer called the combinatorial systole. The number of top-dimensional simplices in the triangulation gives another integer called the combinatorial volume. We show that a class of smooth manifolds satisfies a systolic inequality for all Riemannian metrics if and only if it satisfies a corresponding combinatorial systolic inequality for all smooth triangulations. Along the way, we show that any closed Riemannian manifold has a smooth triangulation which "remembers" the geometry of the Riemannian metric, and conversely, that every smooth triangulation gives rise to Riemannian metrics which encode the combinatorics of the triangulation. We give a few applications of these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.