Compiling quantum algorithms for near-term quantum computers (accounting for connectivity and native gate alphabets) is a major challenge that has received significant attention both by industry and academia. Avoiding the exponential overhead of classical simulation of quantum dynamics will allow compilation of larger algorithms, and a strategy for this is to evaluate an algorithm's cost on a quantum computer. To this end, we propose a variational hybrid quantum-classical algorithm called quantum-assisted quantum compiling (QAQC). In QAQC, we use the overlap between a target unitary U and a trainable unitary V as the cost function to be evaluated on the quantum computer. More precisely, to ensure that QAQC scales well with problem size, our cost involves not only the global overlap Tr(V † U ) but also the local overlaps with respect to individual qubits. We introduce novel short-depth quantum circuits to quantify the terms in our cost function, and we prove that our cost cannot be efficiently approximated with a classical algorithm under reasonable complexity assumptions. We present both gradient-free and gradient-based approaches to minimizing this cost. As a demonstration of QAQC, we compile various one-qubit gates on IBM's and Rigetti's quantum computers into their respective native gate alphabets. Furthermore, we successfully simulate QAQC up to a problem size of 9 qubits, and these simulations highlight both the scalability of our cost function as well as the noise resilience of QAQC. Future applications of QAQC include algorithm depth compression, black-box compiling, noise mitigation, and benchmarking. arXiv:1807.00800v5 [quant-ph]
Variational hybrid quantum-classical algorithms are promising candidates for near-term implementation on quantum computers. In these algorithms, a quantum computer evaluates the cost of a gate sequence (with speedup over classical cost evaluation), and a classical computer uses this information to adjust the parameters of the gate sequence. Here we present such an algorithm for quantum state diagonalization. State diagonalization has applications in condensed matter physics (e.g., entanglement spectroscopy) as well as in machine learning (e.g., principal component analysis). For a quantum state ρ and gate sequence U , our cost function quantifies how far U ρU † is from being diagonal. We introduce novel short-depth quantum circuits to quantify our cost. Minimizing this cost returns a gate sequence that approximately diagonalizes ρ. One can then read out approximations of the largest eigenvalues, and the associated eigenvectors, of ρ. As a proof-of-principle, we implement our algorithm on Rigetti's quantum computer to diagonalize one-qubit states and on a simulator to find the entanglement spectrum of the Heisenberg model ground state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.