Non-invasive temperature sensing is necessary to analyze biological processes occurring in the human body, including cellular enzyme activity, protein expression, and ion regulation. To probe temperature-sensitive processes at the nanoscale, novel luminescence nanothermometers are developed based on graphene quantum dots (GQDs) synthesized via top-down (RGQDs) and bottom-up (N-GQDs) approaches from reduced graphene oxide and glucosamine precursors, respectively. Because of their small 3–6 nm size, non-invasive optical sensitivity to temperature change, and high biocompatibility, GQDs enable biologically safe sub-cellular resolution sensing. Both GQD types exhibit temperature-sensitive yet photostable fluorescence in the visible and near-infrared for RGQDs, utilized as a sensing mechanism in this work. Distinctive linear and reversible fluorescence quenching by up to 19.3% is observed for the visible and near-infrared GQD emission in aqueous suspension from 25 °C to 49 °C. A more pronounced trend is observed with GQD nanothermometers internalized into the cytoplasm of HeLa cells as they are tested in vitro from 25 °C to 45 °C with over 40% quenching response. Our findings suggest that the temperature-dependent fluorescence quenching of bottom-up and top-down-synthesized GQDs studied in this work can serve as non-invasive reversible/photostable deterministic mechanisms for temperature sensing in microscopic sub-cellular biological environments.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Non-invasive temperature sensing is necessary for the analysis of biological processes occurring in the human body including cellular enzyme activity, protein expression, and ion regulation. In order to probe temperature-sensitive processes at the nanoscale we develop novel luminescence nanothermometers based on graphene quantum dots (GQDs) synthesized via top-down (RGQDs) and bottom-up (N-GQDs) approaches from reduced graphene oxide and glucosamine precursors. Because of their small 3-6 nm size, non-invasive optical sensitivity to temperature change, and high biocompatibility, GQDs enable biologically safe sub-cellular resolution sensing. Both GQD types exhibit temperature-sensitive, yet photostable fluorescence in the visible and near-infrared for RGQDs, utilized as a sensing mechanism in this work. Distinctive linear and reversible fluorescence quenching with temperature by up to 19.3 % is observed for the visible and near-infrared GQD emission in aqueous suspension, in a small temperature range from 25 to 49℃. An even more pronounced trend is observed with GQD nanothermometers internalized into the cytoplasm of HeLa cells as they are tested in vitro in the temperature range of 25℃ to 45℃ with over 40% quenching response. Our findings suggest that the temperature-dependent fluorescence quenching of bottom-up and top-down-synthesized GQDs studied in this work can serve as non-invasive reversible photostable deterministic mechanism for temperature sensing in microscopic sub-cellular biological environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.