The BET (bromodomain and extra-terminal) proteins bind acetylated histones and recruit protein complexes to promote transcription elongation. In hematologic cancers, BET proteins have been shown to regulate expression of MYC and other genes that are important to disease pathology. Pharmacologic inhibition of BET protein binding has been shown to inhibit tumor growth in MYC-dependent cancers, such as multiple myeloma. In this study, we demonstrate that small cell lung cancer (SCLC) cells are exquisitely sensitive to growth inhibition by the BET inhibitor JQ1. JQ1 treatment has no impact on MYC protein expression, but results in downregulation of the lineage-specific transcription factor ASCL1. SCLC cells that are sensitive to JQ1 are also sensitive to ASCL1 depletion by RNAi. Chromatin immunoprecipitation studies confirmed the binding of the BET protein BRD4 to the ASCL1 enhancer, and the ability of JQ1 to disrupt the interaction. The importance of ASCL1 as a potential driver oncogene in SCLC is further underscored by the observation that ASCL1 is overexpressed in >50% of SCLC specimens, an extent greater than that observed for other putative oncogenes (MYC, MYCN, and SOX2) previously implicated in SCLC. Our studies have provided a mechanistic basis for the sensitivity of SCLC to BET inhibition and a rationale for the clinical development of BET inhibitors in this disease with high unmet medical need.
Small molecule inhibitors targeting mutant epidermal growth factor receptor (EGFR) are standard of care in non-small cell lung cancer (NSCLC), but acquired resistance invariably develops through mutations in EGFR or through activation of compensatory pathways such as cMet. Amivantamab (JNJ-61186372) is an anti-EGFR and anti-cMet bispecific low fucose antibody with enhanced Fc function designed to treat tumors driven by activated EGFR and/or cMet signaling. Potent in vivo anti-tumor efficacy is observed upon amivantamab treatment of human tumor xenograft models driven by mutant activated EGFR and this activity is associated with receptor downregulation. Despite these robust anti-tumor responses in vivo, limited antiproliferative effects and EGFR/cMet receptor downregulation by amivantamab were observed in vitro. Interestingly, in vitro addition of isolated human immune cells notably enhanced amivantamab-mediated EGFR and cMet downregulation leading to antibody dose-dependent cancer cell killing. Through a comprehensive assessment of the Fc-mediated effector functions, we demonstrate that monocytes and/or macrophages, through trogocytosis, are necessary and sufficient for Fc interaction-mediated EGFR/cMet downmodulation and are required for in vivo anti-tumor efficacy. Collectively, our findings represent a novel Fc-dependent macrophagemediated anti-tumor mechanism of amivantamab and highlight trogocytosis as an important mechanism of action to exploit in designing new antibody-based cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.