The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars—Mass spectrometry—Life detection—Planetary instrumentation. Astrobiology 17, 655–685.
With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbredstrain mouse serum by direct infusion (DI). Using internal mass calibration (mass error ≤1 ppm), we determined the rational elemental compositions (incorporating unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100 metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute quantitation of choline with subpmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a 600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene (TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics, with more than 400
Trapped ion electron diffraction measurements on silver cluster cations, Ag n + for sizes n =36-46,55 at ϳ120 K describe an evolution in structural symmetry with increasing cluster size. Diffraction patterns characterize fivefold symmetry at smaller sizes which evolves to icosahedral symmetry at n = 55. Low energy isomer structures were identified by statistical search methods and optimized by density-functional calculations. Comparison of diffraction data with these theoretical structures confirms the presence of local order having fivefold symmetry for sizes n = 36-39, 43 and global order having icosahedral symmetry at the closed shell size n = 55.
MALDI imaging allows the creation of a "molecular image" of a tissue slice. This image is reconstructed from the ion abundances in spectra obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI, however, is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method which could provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. In this paper, we report the development of a novel MALDI imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically labeled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI multiple reaction monitoring (MRM) mass spectrometry (MS), and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabeled proteolytic peptides to the corresponding transitions from the applied isotopically labeled standard peptides. In a parallel experiment, the quantity of the labeled peptide applied to the tissue was determined using a standard curve generated from MALDI time-of-flight (TOF) MS data. This external calibration curve was then used to determine the quantity of endogenous peptide in a given area. All standard curves generate by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility for the precise and accurate quantitation of tissue protein concentrations over 2 orders of magnitude, while maintaining the spatial localization information for the proteins.
Four new helical oligoproline assemblies containing 16, 17, 18, and 19 proline residues and ordered arrays of a Ru(II)-bipyridyl chromophore and a phenothiazine electron-transfer donor have been synthesized in a modular fashion by solid-phase peptide synthesis. These arrays are illustrated and abbreviated as CH(3)CO-Pro(6)-Pra(PTZ)-Pro(n)()-Pra(Ru(II)b(2)m)(2+)-Pro(6)-NH(2), where PTZ is 3-(10H-phenothiazine-10)propanoyl and (Ru(II)b'(2)m)(2+) is bis(4,4'-diethylamide-2,2'-bipyridine)(4-methyl,4'-carboxylate,2,2'-bipyridine)ruthenium(II) dication with n = 2 (2), 3 (3), 4 (4), and 5 (5). They contain PTZ as an electron-transfer donor and (Ru(II)b'(2)m)(2+) as a metal-to-ligand charge transfer (MLCT) light absorber and are separated by proline-to-proline through-space distances ranging from 0 (n = 2) to 12.9 A (n = 5) relative to the n = 2 case. They exist in the proline-II helix form in water, as shown by circular dichroism measurements. Following laser flash Ru(II) --> b'(2)m MLCT excitation at 460 nm in water, excited-state PTZ --> Ru(2+) quenching (k(2)) occurs by reductive electron transfer, followed by Ru(+) --> PTZ(+) back electron transfer (k(3)), as shown by transient absorption and emission measurements in water at 25 degrees C. Quenching with DeltaG degrees = -0.1 eV is an activated process, while back electron transfer occurs in the inverted region, DeltaG degrees = -1.8 eV, and is activationless, as shown by temperature dependence measurements. Coincidentally, both reactions have comparable distance dependences, with k(2)( )()varying from = 1.9 x 10(9) (n = 2) to 2.2 x 10(6) s(-)(1) (n = 4) and k(3) from approximately 2.0 x 10(9) (n = 2) to 2.2 x 10(6) s(-)(1) (n = 4). For both series there is a rate constant enhancement of approximately 10 for n = 5 compared to n = 4 and a linear decrease in ln k with the through-space separation distance, pointing to a significant and probably dominant through-space component to intrahelical electron transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.