BackgroundThe threespot damselfish, Stegastes planifrons (Cuvier), is important in mediating interactions among corals, algae, and herbivores on Caribbean coral reefs. The preferred microhabitat of S. planifrons is thickets of the branching staghorn coral Acropora cervicornis. Within the past few decades, mass mortality of A. cervicornis from white-band disease and other factors has rendered this coral a minor ecological component throughout most of its range.Methodology/Principal FindingsSurvey data from Jamaica (heavily fished), Florida and the Bahamas (moderately fished), the Cayman Islands (lightly to moderately fished), and Belize (lightly fished) indicate that distributional patterns of S. planifrons are positively correlated with live coral cover and topographic complexity. Our results suggest that species-specific microhabitat preferences and the availability of topographically complex microhabitats are more important than the abundance of predatory fish as proximal controls on S. planifrons distribution and abundance.Conclusions/SignificanceThe loss of the primary microhabitat of S. planifrons—A. cervicornis—has forced a shift in the distribution and recruitment of these damselfish onto remaining high-structured corals, especially the Montastraea annularis species complex, affecting coral mortality and algal dynamics throughout the Caribbean.
BackgroundAs Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere.Methodology/Principal FindingsWe used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop ∼41 Ma (million years ago), eliminated durophagous predators—teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)—from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, ∼33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves.Conclusions/SignificanceRapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other portions of the Antarctic coast. The differential responses of faunal components will reduce the endemic character of Antarctic subtidal communities, homogenizing them with nearshore communities at lower latitudes.
The emulsification of oil at the Deepwater Horizon (DWH) well head relegated a large proportion of resultant hydrocarbon plumes to the deep sea, facilitated the incorporation of oil droplets into microbial and planktonic food web, and limited the severity of direct, wetland oiling to coastal Louisiana. Nevertheless, many transient fish and invertebrate species rely on offshore surface waters for egg and larval transport before settling in coastal habitats, thereby potentially impacting the recruitment of transient species to coastal nursery habitats quite distant from the well site. We compared the utilization of salt-marsh habitats by transient and resident nekton before and after the DWH accident using data obtained from an oyster reef restoration project in coastal Alabama. Our sampling activities began in the summer preceding the DWH spill and continued almost two years following the accident. Overall, we did not find significant differences in the recruitment of marsh-associated resident and transient nekton in coastal Alabama following the DWH accident. Our results, therefore, provide little evidence for severe acute or persistent oil-induced impacts on organisms that complete their life cycle within the estuary and those that spent portions of their life history in potentially contaminated offshore surface waters prior to their recruitment to nearshore habitats. Our negative findings are consistent with other assessments of nekton in coastal vegetated habitats and bolster the notion that, despite the presence of localized hydrocarbon enrichments in coastal habitats outside of Louisiana the most severe oil impacts were relegated to coastal Louisiana and the deep sea. Analyzing all the information learned from this accident will undoubtedly provide a synthesis of what has or has not been affected in the Northern Gulf of Mexico, which when put in context with oil spill studies elsewhere should improve our ability to avert and manage the negative consequences of such accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.