The mammalian inflammatory response to infection involves the induction of several hundred genes, a process that must be carefully regulated to achieve pathogen clearance and prevent the consequences of unregulated expression, such as cancer. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that has also been linked to cancer. However, the relationship between inflammation, innate immunity, and miRNA expression is just beginning to be explored. In the present study, we use microarray technology to identify miRNAs induced in primary murine macrophages after exposure to polyriboinosinic:polyribocytidylic acid or the cytokine IFN-. miR-155 was the only miRNA of those tested that was substantially up-regulated by both stimuli. It also was induced by several Toll-like receptor ligands through myeloid differentiation factor 88-or TRIF-dependent pathways, whereas up-regulation by IFNs was shown to involve TNF-␣ autocrine signaling. Pharmacological inhibition of the kinase JNK blocked induction of miR-155 in response to either polyriboinosinic:polyribocytidylic acid or TNF-␣, suggesting that miR-155-inducing signals use the JNK pathway. Together, these findings characterize miR-155 as a common target of a broad range of inflammatory mediators. Importantly, because miR-155 is known to function as an oncogene, these observations identify a potential link between inflammation and cancer.cancer ͉ inflammation ͉ innate immunity ͉ cytokines
Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression, and they function by repressing specific target genes at the post-transcriptional level. Now, studies of miRNAs are resolving some unsolved issues in immunology. Recent studies have shown that miRNAs have unique expression profiles in cells of the innate and adaptive immune systems and have pivotal roles in the regulation of both cell development and function. Furthermore, when miRNAs are aberrantly expressed they can contribute to pathological conditions involving the immune system, such as cancer and autoimmunity; they have also been shown to be useful as diagnostic and prognostic indicators of disease type and severity. This Review discusses recent advances in our understanding of both the intended functions of miRNAs in managing immune cell biology and their pathological roles when their expression is dysregulated.
Decades of research went into understanding immune cell development and function without awareness that consideration of a key element, microRNA (miRNA), was lacking. The discovery of miRNAs as regulators of developmental events in model organisms suggested to many investigators that miRNA might be involved in the immune system. In the past few years, widespread examination of this possibility has produced notable results. Results have shown that miRNAs affect mammalian immune cell differentiation, the outcome of immune responses to infection and the development of diseases of immunological origin. Some miRNAs repress expression of target proteins with well established functions in hematopoiesis. Here we bring together much of this work, which has so far only scratched the surface of this very fertile field of investigation, and show how the results illuminate many historic questions about hematopoiesis and immune function.
Summary Mammalian non-coding micro RNAs (miRNAs) are a class of gene regulators that have been linked to immune system function. Here, we have investigated the role of miR-155 during an autoimmune inflammatory disease. Consistent with a positive role for miR-155 in mediating inflammatory responses, Mir155−/− mice were highly resistant to experimental autoimmune encephalomyelitis (EAE). miR-155 functions in the hematopoietic compartment to promote the development of inflammatory T cells including the T helper 17 (Th17) cell and Th1 cell subsets. Furthermore, the major contribution of miR-155 to EAE was CD4+ T cell intrinsic, whereas miR-155 was also required for optimum dendritic cell production of cytokines that promoted Th17 cell formation. Our study shows that one aspect of miR-155 function is the promotion of T cell-dependent tissue inflammation, suggesting that miR-155 might be a promising therapeutic target for the treatment of autoimmune disorders.
We have identified a subset of genes that is specifically induced by stimulation of TLR3 or TLR4 but not by TLR2 or TLR9. Further gene expression analyses established that upregulation of several primary response genes was dependent on NF-kappaB, commonly activated by several TLRs, and interferon regulatory factor 3 (IRF3), which was found to confer TLR3/TLR4 specificity. Also identified was a group of secondary response genes which are part of an autocrine/paracrine loop activated by the primary response gene product, interferon beta (IFNbeta). Selective activation of the TLR3/TLR4-IRF3 pathway potently inhibited viral replication. These results suggest that TLR3 and TLR4 have evolutionarily diverged from other TLRs to activate IRF3, which mediates a specific gene program responsible for innate antiviral responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.