The poly(3,4‐dioxypyrrole) (PXDOP) family of conducting and electroactive polymers has now been developed to the point that multiple synthetic routes allow many functionalized polymers with controllable optoelectronic and redox properties. These properties, which include high conductivity, multicolor cathodic and anodic electrochromism, and rapid redox switching, allow these materials to be used in a variety of applications that potentially include conducting coatings, electrochromic windows and displays, chemical sensors, bioactive materials, and mechanical actuators. Surprisingly, the scientific literature published on the PXDOP derivatives has been isolated and sparse compared to that of other conducting polymers. This report will highlight the synthesis and materials properties of PXDOPs and show how these powerful materials fit into the frontier of conducting polymers research.
Dual polymer absorptive/transmissive electrochromic (EC) window devices have been assembled using the solution-processable and high-EC-contrast polymer PProDOT-(CH(2)OEtHx)(2) as the EC material, along with a non-color-changing electroactive polymer, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA), as the counter electrode material. Indium-tin oxide (ITO) and highly transmissive single-walled carbon nanotube (SWNT) film coated glass electrodes are used as electrode substrates. The use of the EC/non-color-changing polymer combination allowed us to construct window devices that rapidly switch between magenta and highly transmissive (>95% T for ITO and approximately 79% T for SWNT) states with large optical modulation (>71% DeltaT for ITO and 66% DeltaT for SWNT). The devices showed effective coloration and bleaching: the lightness parameter (L*) changing from 67 to 95 for ITO (approximately 50-92 for SWNT), essentially reaching a diffuse white upon oxidation. The color modulates from highly pure magenta with a* = 28 (red hue) and b* = -28 (blue chroma) for ITO (a* = 40 and b* = -36 for SWNT) to nearly colorless with a* = 1 and b* = -1 for ITO (a* = -2 and b* = -3 for SWNT) devices. Increasing the switching voltage from 2.55 V up to 3.5 V resulted in faster SWNT-based window device performance.
This Letter describes the synthesis and photophysical characterization of a Ru(II) assembly consisting of metal polypyridyl complexes linked together by a polyfluorene scaffold. Unlike many scaffolds incorporating saturated linkages, the conjugated polymer in this system acts as a functional light-harvesting component. Conformational disorder breaks the conjugation in the polymer backbone, resulting in a chain composed of many chromophore units, whose relative energies depend on the segment lengths. Photoexcitation of the polyfluorene by a femtosecond laser pulse results in the excitation of polyfluorene, which then undergoes direct energy transfer to the pendant Ru(II) complexes, producing Ru(II)* excited states within 500 fs after photoexcitation. Femtosecond transient absorption data show the presence of electron transfer from PF* to Ru(II) to form charge-separated (CS) products within 1-2 ps. The decay of the oxidized and reduced products, PF(+•) and Ru(I), through back electron transfer are followed using picosecond transient absorption methods.
This paper reports a novel supercapacitor electrode design based on poly(3,4-propylenedioxypyrrole) (PProDOP) electropolymerized onto thin films of single walled carbon nanotubes (SWNTs) on glass substrates. This permits the electropolymerization of thicker PProDOP films than can be deposited onto flat gold-coated Kapton electrodes and a correspondingly greater capacitance per unit area. A pyrene functionalized polyfluorene, designated Sticky-PF, was designed and used as an effective monolayer interfacial adhesion modifier between the SWNT films and PProDOP via noncovalent self-assembly onto the SWNT film surfaces before polymer electrodeposition. The thickness of the electrodeposited PProDOP was found to be self-limiting at thicknesses characteristic of each substrate electrode. Optimized areal capacitance values for PProDOP on flat gold and Sticky-PF coated SWNT films were measured to be 8.1 mF/cm 2 and 16.4 mF/cm 2 , respectively, with the twofold enhancement due to the thicker films possible on the SWNT electrode. The specific capacitance of PProDOP on gold and Sticky-PF|SWNT film substrates were found to be similar at 141 F/g and 122 F/g, respectively, indicating the capacitance to be due to the electroactive polymer. The areal capacitance values of the corresponding supercapacitor devices constructed with Au/Kapton substrates was 3.2 mF/cm 2 , whereas a significantly greater value of 8.8 mF/cm 2 was measured for the Sticky-PF|SWNT film substrates. The supercapacitors prepared using the Au/Kapton substrates were highly stable, retaining 80% of their electroactivity after 32 700 nonstop charge/discharge cycles (100% depth of discharge). Supercapacitors made using the Sticky-PF|SWNT substrates showed a steady loss of capacitance to about 57% of the original value (to 5.0 mF/cm 2 ) after 32 700 charge/discharge cycles, which was still 38% larger than the initial capacitance of the gold electrode devices.
We present a method for the synthesis of soluble and processable 3,4-alkylenedioxypyrrole (XDOP)-based conjugated polymers via an iododecarboxylation-deiodination polymerization methodology. Polymerization to the respected PXDOP derivatives of suitably high molecular weight (3.8-14.2 kDa vs polystyrene as measured by GPC) was achieved by either heating the neat monomers for a few hours or allowing them to remain at room temperature for several days. A family of four polymers was synthesized and characterized optically and electrochemically. Polymer solutions were transparent in the visible in their neutral states, red in their partially oxidized states, and grayish-green in their heavily oxidized states. Electrochemical measurements of cast films show that all redox processes occur at low potentials (ca. 0 V vs the Fc/Fc + ), similar to electrodeposited films. Polymers spray-cast as films onto ITO exhibited high band gaps above 3.0 eV along with stable UV and near-IR electrochromism in organic solvents with almost no change in the visible. An amphiphilic polymer functionalized with oligoethoxy substituents exhibited enhanced electrochemistry in aqueous electrolyte and high-contrast electrochromism with respect to the nonpolar functionalized polymers in the visible and near-IR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.