Abstract. The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.
Black hole solutions in general relativity are simple. The frequency spectrum of linear perturbations around these solutions (i.e., the quasinormal modes) is also simple, and therefore it is a prime target for fundamental tests of black hole spacetimes and of the underlying theory of gravity. The following technical calculations must be performed to understand the imprints of any modified gravity theory on the spectrum: 1. Identify a healthy theory; 2. Find black hole solutions within the theory; 3. Compute the equations governing linearized perturbations around the black hole spacetime; 4. Solve these equations to compute the characteristic quasinormal modes. In this work (the first of a series) we assume that the background spacetime has spherical symmetry, that the relevant physics is always close to general relativity, and that there is no coupling between the perturbation equations. Under these assumptions, we provide the general numerical solution to step 4. We provide publicly available data files such that the quasinormal modes of any spherically symmetric spacetime can be computed (in principle) to arbitrary precision once the linearized perturbation equations are known. We show that the isospectrality between the even-and odd-parity quasinormal mode spectra is fragile, and we identify the necessary conditions to preserve it. Finally, we point out that new modes can appear in the spectrum even in setups that are perturbatively close to general relativity.
Linear perturbations of spherically symmetric spacetimes in general relativity are described by radial wave equations, with potentials that depend on the spin of the perturbing field. In previous work [1] we studied the quasinormal mode spectrum of spacetimes for which the radial potentials are slightly modified from their general relativistic form, writing generic small modifications as a power-series expansion in the radial coordinate. We assumed that the perturbations in the quasinormal frequencies are linear in some perturbative parameter, and that there is no coupling between the perturbation equations. In general, matter fields and modifications to the gravitational field equations lead to coupled wave equations. Here we extend our previous analysis in two important ways: we study second-order corrections in the perturbative parameter, and we address the more complex (and realistic) case of coupled wave equations. We highlight the special nature of coupling-induced corrections when two of the wave equations have degenerate spectra, and we provide a ready-to-use recipe to compute quasinormal modes. We illustrate the power of our parametrization by applying it to various examples, including dynamical Chern-Simons gravity, Horndeski gravity and an effective field theory-inspired model. arXiv:1906.05155v3 [gr-qc]
Abstract. The parameterised post-Newtonian (PPN) formalism has enabled stringent tests of static weak-field gravity in a theory-independent manner. Here we incorporate screening mechanisms of modified gravity theories into the framework by introducing an effective gravitational coupling and defining the PPN parameters as functions of position. To determine these functions we develop a general method for efficiently performing the post-Newtonian expansion in screened regimes. For illustration, we derive all the PPN functions for a cubic galileon and a chameleon model. We also analyse the Shapiro time delay effect for these two models and find no deviations from General Relativity insofar as the signal path and the perturbing mass reside in a screened region of space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.