Research by psychologists have shown that subjects had a preference for a side of a face when it was expressing emotions. This paper seeks to find what accuracies can be attained when only a segment of the face is considered. We show that using one side of the face only reduces accuracy by 0.34% but at half the computationally time required. Various other sections of the face are evaluated for similar performance. We demonstrate that using smaller portions of the face have an expected computation reduction but dont suffer the same degree of accuracy loss. For evaluating we train with a Convolutional Neural Network. To test what portions of a facial image are useful, the full face, half face, eyes, single eye, mouth and half of the mouth are chosen. These images come from the JAFFE, CK+ and KDEF datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.