With the increasing widespread of sensor technology, new solutions for indoor positioning systems are continuously being developed and with them, new services requiring accurate positioning data have seen a great rise in popularity. In this thesis, a new design technique and deployment methodology for an indoor positioning system using neural networks is proposed to offer more flexibility and simplicity in the development of such a system which is currently very context-bound. The usage of battery-powered tags implies also that systems should not require excessive power consumption and the large number of targets to position requires a method that is not only accurate but also scalable. The proposed positioning system utilizes a small “swarm” of neural networks tasked to position targets based on distance measurements from Ultrawide Band sensors and requires shorter fingerprint collection campaigns and enables more flexibility in system deployment and alterations. Instead of relying solely on real data collected on the field for the training of neural networks, synthetic data is used for an initial training phase. Together, these propositions allow flexibility in terms of adding, removing or altering positions of reference nodes and simplifies offline deployment operations of an indoor positioning system. This thesis presents a system operating in a laboratory-workshop environment capable of good positioning accuracies and maintains robust performances in poor signal propagation.
With the increasing widespread of sensor technology, new solutions for indoor positioning systems are continuously being developed and with them, new services requiring accurate positioning data have seen a great rise in popularity. In this thesis, a new design technique and deployment methodology for an indoor positioning system using neural networks is proposed to offer more flexibility and simplicity in the development of such a system which is currently very context-bound. The usage of battery-powered tags implies also that systems should not require excessive power consumption and the large number of targets to position requires a method that is not only accurate but also scalable. The proposed positioning system utilizes a small “swarm” of neural networks tasked to position targets based on distance measurements from Ultrawide Band sensors and requires shorter fingerprint collection campaigns and enables more flexibility in system deployment and alterations. Instead of relying solely on real data collected on the field for the training of neural networks, synthetic data is used for an initial training phase. Together, these propositions allow flexibility in terms of adding, removing or altering positions of reference nodes and simplifies offline deployment operations of an indoor positioning system. This thesis presents a system operating in a laboratory-workshop environment capable of good positioning accuracies and maintains robust performances in poor signal propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.