The reversible fluid-solid transition in granular gels enables the three-dimensional writing of soft, delicate, macroscopic structures with microscopic detail.
Interfacial sliding speed and contact pressure between the sub-units of particulate soft matter assemblies can vary dramatically across systems and with dynamic conditions. By extension, frictional interactions between particles may play a key role in their assembly, global configuration, collective motion, and bulk material properties. For example, in tightly packed assemblies of microgels - colloidal microspheres made of hydrogel - particle stiffness controls the fragility of the glassy state formed by the particles. The interplay between particle stiffness and shear stress is likely mediated by particle-particle normal forces, highlighting the potential role of hydrogel-hydrogel friction. Here we study friction at a twinned "Gemini" interface between hydrogels. We construct a lubrication curve that spans four orders of magnitude in sliding speed, and find qualitatively different behaviour from traditional lubrication of engineering material surfaces; fundamentally different types of lubrication occur at the hydrogel Gemini interface. We also explore the role played by polymer solubility and hydrogel-hydrogel adhesion in hydrogel friction. We find that polymer network elasticity, mesh size, and single-chain relaxation times can describe friction at the gel-gel interface, including a transition between lubrication regimes with varying sliding speed.
Structural hydrogel materials are being considered and investigated for a wide variety of biotribological applications. Unfortunately, most of the mechanical strength and rigidity of these materials comes from high polymer concentrations and correspondingly low polymer mesh size, which results in high friction coefficients in aqueous environments. Recent measurements have revealed that soft, flexible, and large mesh size hydrogels can provide ultra low friction, but this comes at the expense of mechanical strength. In this paper, we have prepared a low friction structural hydrogel sample of polyhydroxyethylmethacrylate (pHEMA) by polymerizing an entangled polymer network on the surface through a solution polymerization route. The entangled polymer network was made entirely from uncrosslinked polyacrylamide (pAAm) that was polymerized from an aqueous solution and had integral entanglement with the pHEMA surface. Measurements revealed that these entangled polymer networks could extend up to ∼200 μm from the surface, and these entangled polymer networks can provide reductions in friction coefficient of almost two orders of magnitude (μ > 0.7 to μ < 0.01).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.