Unbiased estimation of causal parameters from marginal structural models (MSMs) requires a fundamental assumption of no unmeasured confounding. Unfortunately, the time-varying covariates used to obtain inverse probability weights are often error-prone. Although substantial measurement error in important confounders is known to undermine control of confounders in conventional unweighted regression models, this issue has received comparatively limited attention in the MSM literature. Here we propose a novel application of the simulation-extrapolation (SIMEX) procedure to address measurement error in time-varying covariates, and we compare 2 approaches. The direct approach to SIMEX-based correction targets outcome model parameters, while the indirect approach corrects the weights estimated using the exposure model. We assess the performance of the proposed methods in simulations under different clinically plausible assumptions. The simulations demonstrate that measurement errors in time-dependent covariates may induce substantial bias in MSM estimators of causal effects of time-varying exposures, and that both proposed SIMEX approaches yield practically unbiased estimates in scenarios featuring low-to-moderate degrees of error. We illustrate the proposed approach in a simple analysis of the relationship between sustained virological response and liver fibrosis progression among persons infected with hepatitis C virus, while accounting for measurement error in γ-glutamyltransferase, using data collected in the Canadian Co-infection Cohort Study from 2003 to 2014.
Intermittent RMP+PZA+EMB appears to be effective in HIV-negative patients, but the regimen is poorly tolerated, possibly due to the prolonged use of PZA. Alternative regimens of lower toxicity are needed.
Correct specification of the exposure model is essential for unbiased estimation in marginal structural models with inverse-probability-of-treatment weights. However, although flexible modeling is commonplace when estimating effects of continuous covariates in outcome models, its use is less frequent in estimation of inverse probability weights. Using simulations, we assess the accuracy of the treatment effect estimates and covariate balance obtained with different exposure model specifications when the true relationship between a continuous, possibly time-varying covariate L t and the logit of the probability of exposure is nonlinear. Specifically, we compare 4 approaches to modeling the effect of L t when estimating inverse probability weights: a linear function, the covariatebalancing propensity score, and 2 easy-to-implement flexible methods that relax the assumption of linearity: cubic regression splines and fractional polynomials. Using data from 2 empirical studies, we compare linear exposure models with flexible exposure models to estimate the effect of sustained virological response to hepatitis C virus treatment on the progression of liver fibrosis. Our simulation results demonstrate that ignoring important nonlinear relationships when fitting the exposure model may provide poorer covariate balance and induce substantial bias in the estimated exposure-outcome associations. Analysts should routinely consider flexible modeling of continuous covariates when estimating inverse-probability-of-treatment weights.
Although utilization of Xpert was low, it may have contributed to an increase in evaluations for possible MDR-TB and a decline in empiric treatment for PLHIV when available as POC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.