The canonical model of sex-chromosome evolution predicts that, as recombination is suppressed along sex chromosomes, gametologs will progressively differentiate, eventually becoming heteromorphic. However, there are numerous examples of homomorphic sex chromosomes across the tree of life. This homomorphy has been suggested to result from frequent sex-chromosome turnovers, yet we know little about which forces drive them. Here, we describe an extremely fast rate of turnover among 28 species of Ranidae. Transitions are not random, but converge on several chromosomes, potentially due to genes they harbour. Transitions also preserve the ancestral pattern of male heterogamety, in line with the ‘hot-potato’ model of sex-chromosome transitions, suggesting a key role for mutation-load accumulation in non-recombining genomic regions. The importance of mutation-load selection in frogs might result from the extreme heterochiasmy they exhibit, making frog sex chromosomes differentiate immediately from emergence and across their entire length.
Allelic variation at the Cu–Zn superoxide dismutase (SOD1) locus has been shown to be associated with resistance of the snail, Biomphalaria glabrata, to infection by the trematode parasite, Schistosoma mansoni. SOD1 catalyses the production of hydrogen peroxide, a known cytotoxic component of the oxidative burst used in defence against pathogens. In our laboratory population of B. glabrata, the most resistant allele at SOD1 is over-expressed relative to the other two alleles. Because hydrogen peroxide also causes oxidative stress on host tissues, we hypothesised that over-expression of SOD1 might be compensated by epistatic interactions with other loci involved in oxidation–reduction (redox) pathways. Catalase, peroxiredoxins and glutathione peroxidases all degrade hydrogen peroxide. We tested whether alleles at each of these loci were in linkage disequilibrium with SOD1 in our population, as might be expected given strong epistatic selection. We found that SOD1, catalase (CAT) and a peroxiredoxin locus (PRX4) are in strong linkage disequilibrium in our population. We also found that these loci are tightly linked, within 1–2 cM of each other, which explains the high linkage disequilibrium. This result raises the possibility that there is a linked cluster of redox genes, and perhaps other defence-relevant genes, in the B. glabrata genome. Whether epistatic interactions for fitness actually exist among these loci still needs to be tested. However the close physical linkage among SOD1, PRX4 and CAT, and subsequent high disequilibrium, makes such interactions a plausible hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.