Paclitaxel-loaded shell cross-linked polymeric nanoparticles having an enzymatically and hydrolytically degradable poly(lactic acid) core and a glutathione-responsive disulfide cross-linked poly(oligoethylene glycol)-containing corona were constructed in aqueous solution and investigated for their stimuli-responsive release of the embedded therapeutics and in vitro cytotoxicity. Paclitaxel release from the nanoparticles in PBS buffer was accelerated in the presence of glutathione at both pH 5.5 and pH 7.4, reaching ca. 65% cumulative drug release after 8 d, whereas only ca. 50% and 35% extents of release were observed in the absence of glutathione at pH 5.5 and pH 7.4, respectively. Enzyme-catalyzed hydrolysis of the nanoparticle core resulted in the degradation of ca. 30% of the poly(lactic acid) core to lactic acid within 12 h, with coincidently triggered paclitaxel release of ca. 37%, as opposed to only ca. 17% release from the uncatalyzed nanoparticles at pH 7.4. While empty nanoparticles did not show any inherent cytotoxicity at the highest tested concentrations, paclitaxel-loaded nanoparticles showed IC50 values that were similar to those of free paclitaxel at 72 h incubation with KB cells and were more efficacious at ca. 3-fold lower IC50 value (0.031 μM vs 0.085 μM) at 2 h of incubation. Against human ovarian adenocarcinoma cells, the paclitaxel-loaded nanoparticles exhibited a remarkable ca. 11-fold lower IC50 than a Taxol-mimicking formulation (0.0007 μM vs 0.008 μM) at 72 h of incubation. These tunable dual-responsive degradable nanoparticles show great promise for delivery of paclitaxel to tumor tissues, given their superior in vitro efficacies compared to that of free paclitaxel and Taxol-mimicking formulations.
Electrostatic interaction-mediated enzymatic-hydrolysis of poly(lactide)-containing nanoscale assemblies is described. At physiological pH, degradable core–shell morphologies with charged shells can readily attract or repel enzymes carrying opposite or similar charges, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.