The current predominant theapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target’s ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.
The androgen receptor is a major driver of prostate cancer and inhibition of its transcriptional activity using competitive antagonists, such as enzalutamide remains a frontline therapy for prostate cancer management. However, the majority of patients eventually develop drug resistance. We propose that targeting the androgen receptor for degradation via Proteolysis Targeting Chimeras (PROTACs) will be a better therapeutic strategy for targeting androgen receptor signaling in prostate cancer cells. Here we perform a head-to-head comparison between a currently approved androgen receptor antagonist enzalutamide, and its PROTAC derivative, ARCC-4, across different cellular models of prostate cancer drug resistance. ARCC-4 is a low-nanomolar androgen receptor degrader able to degrade about 95% of cellular androgen receptors. ARCC-4 inhibits prostate tumor cell proliferation, degrades clinically relevant androgen receptor point mutants and unlike enzalutamide, retains antiproliferative effect in a high androgen environment. Thus, ARCC-4 exemplifies how protein degradation can address the drug resistance hurdles of enzalutamide.
259 Background: The Androgen Receptor (AR) remains the principal driver of castration-resistant prostate cancer during the transition from a localized to metastatic disease. Most patients initially respond to inhibitors of the AR pathway, but the response is often relatively short-lived. The majority of patients progressing on enzalutamide or abiraterone exhibit genetic alterations in the AR locus, either in the form of amplifications or point mutations in the AR gene. Given these mechanisms of resistance, our goal is to eliminate the AR protein using the PROteolysis TArgeting Chimera (PROTAC) technology. Methods: Here we report an orally bioavailable small molecule AR PROTAC degrader, ARV-110, that promotes ubiquitination and degradation of AR. This molecule has been characterized in in vitro degradation and functional assays, and DMPK, toxicology and preclinical efficacy studies. Results: ARV-110 robustly degrades AR in all cell lines tested, with an observed half-maximal degradation concentration (DC50) of ~1 nM. ARV-110 treatment leads to highly selective AR degradation, as demonstrated by proteomic studies. In VCaP cells, PROTAC-mediated AR degradation suppresses the expression of the AR-target gene PSA, inhibits AR-dependent cell proliferation, and induces apoptosis at low nanomolar concentrations. Further, ARV-110 degrades clinically relevant mutant AR proteins and retains activity in a high androgen environment. In mouse xenograft studies, greater than 90% AR degradation is observed at a 1 mg/kg PO QD dose. Significant inhibition of tumor growth and AR signaling has been achieved in LNCaP, VCaP and prostate cancer patient derived xenograft (PDX) models. Notably, ARV-110 demonstrates in vivo efficacy and reduction of AR-target gene expression in a long term, castrate, enzalutamide-resistant VCaP tumor model. Conclusions: In summary, we report preclinical data on an orally bioavailable AR PROTAC degrader, ARV-110, that demonstrates efficacy in multiple prostate cancer models. ARV-110 has completed IND-enabling studies and FIH studies are planned for 1Q2019.
ARV-471, an estrogen receptor (ER) alpha PROTAC, is a hetero-bifunctional molecule that facilitates the interactions between estrogen receptor alpha and an intracellular E3 ligase complex, leading to the ubiquitylation and subsequent degradation of estrogen receptors via the proteasome. ARV-471 robustly degrades ER in ER-positive breast cancer cell lines with a half-maximal degradation concentration (DC50) of ˜ 2 nM. PROTAC-mediated ER degradation decreases the expression of classically-regulated ER-target genes (PR, GREB1, TFF) and inhibits cell proliferation of ER-dependent cell lines (MCF7, T47D). Additionally, ARV-471 degrades clinically-relevant ESR1 variants (Y537S and D538G) and inhibits growth of cell lines expressing those variants. In an immature rat uterotrophic model, ARV-471 degrades rat uterine ER and demonstrates no agonist activity. Daily, oral-administration of single agent ARV-471 (3, 10, and 30 mpk) leads to significant tumor volume regressions of estradiol-dependent MCF7 xenografts and concomitant tumor ER protein reductions of >90% at study termination. Moreover, when a CDK4/6 inhibitor is combined with ARV-471 in the MCF7 model, even more pronounced tumor growth inhibition is observed (˜130% TGI), accompanied by significant reductions in ER protein levels. In an ESR1 Y537S, hormone-independent patient-derived xenograft model, ARV-471 at 10 mpk completely inhibited growth and also reduced mutant ER protein levels. Taken together, the preclinical data of ARV-471 supports its continued development as a best-in-class oral ER PROTAC-degrader. Citation Format: Flanagan JJ, Qian Y, Gough SM, Andreoli M, Bookbinder M, Cadelina G, Bradley J, Rousseau E, Willard R, Pizzano J, Crews CM, Crew AP, Taylor I, Houston J. ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P5-04-18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.