The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts such as body, handle, and aperture in the same color scheme scenario. Similarly, the aperture is smaller with lower resolution making deep convolutional neural networks more difficult to segment. As the input feature map diminishes as the net progresses, information about the aperture or the object on a smaller scale may be lost. It recommends using Deeplabv3 architecture to overcome this issue, as it is successful for semantic segmentation. Based on the experiment conducted, the average precision of the body, handle, and aperture of the portable X-ray source model are 91.75%, 20.41%, and 6.25%, respectively. Moreover, it indicates that detecting the “body” part has the highest average precision. In contrast, the detection of the “aperture” part has the lowest average precision. Likewise, the study found that using Deeplabv3 deep neural network architecture, detection, and segmentation of the portable X-ray source model was successful but needed improvement to increase the overall mean AP of 39.47%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.