Lipophilic (logP > 1) and amphiphilic drugs (also known as cationic amphiphilic drugs) with ionizable amines (pK a > 6) can accumulate in lysosomes, a process known as lysosomal trapping. This process contributes to presystemic extraction by lysosome-rich organs (such as liver and lung), which, together with the binding of lipophilic amines to phospholipids, contributes to the large volume of distribution characteristic of numerous cardiovascular and central nervous system drugs. Accumulation of lipophilic amines in lysosomes has been implicated as a cause of phospholipidosis. Furthermore, elevated levels of lipophilic amines in lysosomes can lead to high organ-to-blood ratios of drugs that can be mistaken for active drug transport. In the present study, we describe an in vitro fluorescence-based method (using the lysosome-specific probe LysoTracker Red) to identify lysosomotropic agents in immortalized hepatocytes (Fa2N-4 cells). A diverse set of compounds with various physicochemical properties were tested, such as acids, bases, and zwitterions. In addition, the partitioning of the nonlysosomotropic atorvastatin (an anion) and the lysosomotropics propranolol and imipramine (cations) were quantified in Fa2N-4 cells in the presence or absence of various lysosomotropic or nonlysosomotropic agents and inhibitors of lysosomal sequestration (NH 4 Cl, nigericin, and monensin). Cellular partitioning of propranolol and imipramine was markedly reduced (by at least 40%) by NH 4 Cl, nigericin, or monensin. Lysosomotropic drugs also inhibited the partitioning of propranolol by at least 50%, with imipramine partitioning affected to a lesser degree. This study demonstrates the usefulness of immortalized hepatocytes (Fa2N-4 cells) for determining the lysosomal sequestration of lipophilic amines.
The human body is continuously exposed to small organic molecules containing one or more basic nitrogen atoms. Many of these are endogenous (i.e., neurotransmitters, polyamines and biogenic amines), while others are exogenously supplied in the form of drugs, foods and pollutants. It is well-known that many amines have a strong propensity to specifically and substantially accumulate in highly acidic intracellular compartments, such as lysosomes, through a mechanism referred to as ion trapping. It is also known that cells have acquired the unique ability to sense and respond to amine accumulation in lysosomes in an effort to prevent potential negative consequences associated with hyperaccumulation. We describe here methods that are used to evaluate the dynamics of amine accumulation in, and egress from, lysosomes. Moreover, we highlight specific proteins that are thought to play important roles in these pathways. A theoretical model describing lysosomal amine dynamics is described and shown to adequately fit experimental kinetic data. The implications of this research in understanding and treating disease are discussed.For over a century, scientists have studied the interactions between low-molecular-weight dyes and cells and tissues. Initially, it was serendipitously discovered that certain dye molecules preferentially associated with specific subcellular structures/compartments. These so-called 'vital stains', together with advances in cell imaging, provided a basis for diagnosing and understanding disease and later became crucial in basic scientific research, providing investigators tools with which to study basic aspects of cell structure and function.In this article, we will focus our attention on the accumulation and egress pathways for small-molecular-weight amine-containing molecules that specifically localize within lysosomes. Lysosomes are found in virtually all mammalian cells and contain various hydrolytic enzymes that function in the digestion and recycling of cellular materials (i.e., proteins, lipids and nucleic acids) [1][2][3][4][5]. These hydrolytic enzymes have optimal activity at low pH (4-5), which is maintained through the activity of the vacuolar H + ATPase (VATPase), which is located on the limiting membrane and functions in pumping protons from the cell cytosol to the luminal space [6,7]. The steep intracellular pH gradient that exists †
How a drug distributes within highly compartmentalized mammalian cells can affect both the activity and pharmacokinetic behavior. Many commercially available drugs are considered to be lysosomotropic, meaning they are extensively sequestered in lysosomes by an ion trapping-type mechanism. Lysosomotropic drugs typically have a very large apparent volume of distribution and a prolonged half-life in vivo, despite minimal association with adipose tissue. In this report we tested the prediction that the accumulation of one drug (perpetrator) in lysosomes could influence the accumulation of a secondarily administered one (victim), resulting in an intracellular distribution-based drug interaction. To test this hypothesis cells were exposed to nine different hydrophobic amine-containing drugs, which included imipramine, chlorpromazine and amiodarone, at a 10 µM concentration for 24 to 48 hours. After exposure to the perpetrators the cellular accumulation of LysoTracker Red (LTR), a model lysosomotropic probe, was evaluated both quantitatively and microscopically. We found that all of the tested perpetrators caused a significant increase in the cellular accumulation of LTR. Exposure of cells to imipramine caused an increase in the cellular accumulation of other lysosomotropic probes and drugs including LyosTracker Green, daunorubicin, propranolol and methylamine; however, imipramine did not alter the cellular accumulation of non-lysosomotropic amine-containing molecules including MitoTracker Red and sulforhodamine 101. In studies using ionophores to abolish intracellular pH gradients we were able to resolve ion trapping-based cellular accumulation from residual pH-gradient independent accumulation. Results from these evaluations in conjunction with lysosomal pH measurements enabled us to estimate the relative aqueous volume of lysosomes of cells before and after imipramine treatment. Our results suggest that imipramine exposure caused a 4-fold expansion in the lysosomal volume, which provides the basis for the observed drug interaction. The imipramine-induced lysosomal volume expansion was shown to be both time- and temperature-dependent and reversed by exposing cells to hydroxypropyl-β-cyclodextrin, which reduced lysosomal cholesterol burden. This suggests that the expansion of lysosomal volume occurs secondary to perpetrator-induced elevations in lysosomal cholesterol content. In support of this claim, the cellular accumulation of LTR was shown to be higher in cells isolated from patients with Niemann-Pick Type C disease, which are known to hyper-accumulate cholesterol in lysosomes.
A number of multidrug-resistant (MDR) cancer cells have been shown to have acquired an increased capacity to sequester weakly basic anticancer drugs in their lysosomes relative to drug-sensitive counterparts. In this report we have comparatively evaluated the concentrations of the anticancer agent daunorubicin (DNR) in intracellular compartments of drug-sensitive and MDR HL-60 cell lines, both of which do not express common efflux transporters such as P-glycoprotein at the plasma membrane. Our results suggest that lysosomal sequestration plays a significant role in the emergence of MDR since it effectively limits the drug's ability to interact with target molecules located in the nucleus. Using a series of weakly basic structural isomers with variable basicity, we illustrate that the magnitude of the pKa value correlates with the degree of lysosomal sequestration. Accordingly, a series of structurally modified forms of DNR with reduced basicity were synthesized, and their intracellular distribution was evaluated. Consistent with model compounds, derivatives of DNR with lowered pKa values showed visibly reduced lysosomal sequestration in two separate MDR cell lines. Collectively, this work highlights the importance of understanding the intracellular localization of drugs and proposes a rational strategy to manipulate it.
Precision pharmacotherapy encompasses the use of therapeutic drug monitoring, evaluation of liver and renal function, genomics, and environmental and lifestyle exposures; and analysis of other unique patient or disease characteristics to guide drug selection and dosing. This paper articulates real‐world clinical applications of precision pharmacotherapy, focusing exclusively on the emerging field of clinical pharmacogenomics. Precision pharmacotherapy is evolving rapidly, and clinical pharmacists now play an invaluable role in the clinical implementation, education, and research applications of pharmacogenomics. This paper provides an overview of the evolution of pharmacogenomics in clinical pharmacy practice, together with recommendations on how the American College of Clinical Pharmacy (ACCP) can support the advancement of clinical pharmacogenomics implementation, education, and research. Commonalities among successful clinical pharmacogenomic implementation and education programs are identified, with recommendations for how ACCP can leverage and advance these common themes. Opportunities are also provided to support the research needed to move the practice and application of pharmacogenomics forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.