Rust is a relatively new programming language that targets efficient and safe systems-level applications. It includes a sophisticated type system that allows for provable memory- and thread-safety, and is explicitly designed to take the place of unsafe languages such as C and C++ in the coding ecosystem. There is a large existing C and C++ codebase (many of which have been affected by bugs and security vulnerabilities due to unsafety) that would benefit from being rewritten in Rust to remove an entire class of potential bugs. However, porting these applications to Rust manually is a daunting task. In this paper we investigate the problem of automatically translating C programs into safer Rust programs--that is, Rust programs that improve on the safety guarantees of the original C programs. We conduct an in-depth study into the underlying causes of unsafety in translated programs and the relative impact of fixing each cause. We also describe a novel technique for automatically removing a particular cause of unsafety and evaluate its effectiveness and impact. This paper presents the first empirical study of unsafety in translated Rust programs (as opposed to programs originally written in Rust) and also the first technique for automatically removing causes of unsafety in translated Rust programs.
The Rust language was created to provide safe low-level systems programming. There is both industrial and academic interest in the problem of (semi-)automatically translating C code to Rust in order to exploit Rust's safety guarantees. We study the effectiveness and limitations of existing techniques for automatically translating unsafe raw pointers (in Rust programs translated from C) into safe Rust references via ownership and lifetime inference. Our novel evaluation methodology enables our study to extend beyond prior studies, and to discover new information contradicting the conclusions of prior studies. We find that existing translation methods are severely limited by a lack of precision in the Rust compiler's safety checker, causing many safe pointer manipulations to be labeled as potentially unsafe. Leveraging this information, we propose methods for improving translation, based on encoding the results of a more precise analysis in a manner that is understandable to an unmodified Rust compiler. We implement one of our proposed methods, increasing the number of pointers that can be translated to safe Rust references by 75% over the baseline (from 12% to 21% of all pointers).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.