The maximal vector problem is to identify the maximals over a collection of vectors. This arises in many contexts and, as such, has been well studied. The problem recently gained renewed attention with skyline queries for relational databases and with work to develop skyline algorithms that are external and relationally well behaved.While many algorithms have been proposed, how they perform has been unclear. We study the performance of, and design choices behind, these algorithms. We prove runtime bounds based on the number of vectors n and the dimensionality k. Early algorithms based on divide-and-conquer established seemingly good average and worst-case asymptotic runtimes. In fact, the problem can be solved in O(n) average-case (holding k as fixed). We prove, however, that the performance is quite bad with respect to k. We demonstrate that the more recent skyline algorithms are better behaved, and can also achieve O(kn) averagecase. While k matters for these, in practice, its effect vanishes in the asymptotic. We introduce a new external algorithm, LESS, that is more efficient and better behaved. We evaluate LESS's effectiveness and improvement over the field, and prove that its average-case running time is O(kn).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.