ACVR2 mutations are highly frequent in MSI-H colon cancers and in most cases cause loss of ACVR2 expression, indicating biallelic inactivation of the gene. Loss of activin signaling through mutation of ACVR2, similar to observations with TGFBR2, may be important in the genesis of MSI-H colorectal cancer.
African American patients with colorectal cancer show higher mortality than their Caucasian counterparts. Biology might play a partial role, and prior studies suggest a higher prevalence for microsatellite instability (MSI) among cancers from African Americans, albeit patients with MSI cancers have improved survival over patients with non-MSI cancers, counter to the outcome observed for African American patients. CD8+ T cell infiltration of colon cancer is postively correlated with MSI tumors, and is also related to improved outcome. Here, we utilized a 503-person, population-based colon cancer cohort comprising 45% African Americans to determine, under blinded conditions from all epidemiological data, the prevalence of MSI and associated CD8+ T cell infiltration within the cancers. Among Caucasian cancers, 14% were MSI, whereas African American cancers demonstrated 7% MSI (P = 0.009). Clinically, MSI cancers between races were similar; among microsatellite stable cancers, African American patients were younger, female, and with proximal cancers. CD8+ T cells were higher in MSI cancers (88.0 vs 30.4/hpf, P<0.0001), but was not different between races. Utilizing this population-based cohort, African American cancers show half the MSI prevalence of Caucasians without change in CD8+ T cell infiltration which may contribute towards their higher mortality from colon cancer.
Objective: Microsatellite instability (MSI) is one form of genomic instability that occurs in 10% to 20% of sporadic colon tumors and almost all hereditary nonpolyposis colon cancers. However, little is known about how environmental factors (e.g., diet) may influence MSI in sporadic colon cancer. Methods: We used data from a population-based casecontrol study in North Carolina (486 colon cancer cases and 1,048 controls) to examine associations of diet (total energy, macronutrients, micronutrients, and food groups) with MSI. In-person interviews elicited information on potential colon cancer risk factors, and a previously validated food frequency questionnaire adapted to include regional foods was used to assess diet over the year before diagnosis or interview date. MSI was classified as MSI-high (MSI-H) and MSI-low or microsatellite stable (MSI-L/MSS). Multivariate logistic regression models estimated energy-adjusted and non-energy-adjusted odds ratios (OR).Results: Ten percent of the cases (n = 49) had MSI-H tumors (29% African American). The strongest associations between diet and MSI were observed in case-control comparisons: there was a robust inverse association between MSI-H status and B-carotene [OR, 0.4; 95% confidence interval (95% CI), 0.2-0.9] and positive associations with energy-adjusted refined carbohydrates (OR, 2.2; 95% CI, 0.9-5.4) and non-energy-adjusted read meat intake (OR, 2.0; 95% CI, 0.9-4.2). Compared with controls, MSI-L/MSS tumors were statistically significantly associated with energy-adjusted vitamin C, vitamin E, calcium, dietary fiber, and dark green vegetables and positively associated with total energy intake (all Ps for trend < 0.05). In case-case comparisons, no dietary factors were significantly differently related to MSI-H compared with MSI-L/MSS tumors. Conclusion: Refined carbohydrate and red meat consumption may promote development of MSI-H tumors, whereas B-carotene may be associated with lower risk.
High-frequency microsatellite unstable (MSI-H) colon tumors develop as a consequence of mutations at repetitive sequences in target genes. TGFBR2 and ACVR2, encoding TGFb superfamily receptors, and the proapoptotic gene BAX are frequent targets for frameshift mutation. We analyzed the effect of these mutations on survival and histology in 2 separate cohorts. Forty-eight MSI-H Dukes B2 colon tumors from a cohort of 172 patients had mutations in TGFBR2, BAX and ACVR2 correlated with patient survival. Further, 54 population-based MSI-H colon cancers of all stages from a cohort of 503 patients had mutations correlated with tumor stage, grade and size. Of 44 amplifiable MSI-H Dukes B2 tumors, 70% harbored TGFBR2, 63% BAX and only 4.5% ACVR2 mutations. While mutation alone did not influence survival, concomitant mutation of TGFBR2 and BAX was associated with an improved prognosis in Dukes B2 patients (p 5 0.05). ACVR2 mutations were more frequent in the second, populationbased cohort (stage II: 32.5%, p < 0.05). While no target gene mutation correlated with stage in this cohort, poor histological grade and large tumor volume were associated with mutant ACVR2, but not TGFBR2 or BAX mutations, and likely accounts for the lower prevalence of ACVR2 mutations in the first, well-differentiated Dukes B2 cohort. Because target gene mutations did not correlate with stage, they likely occur early in the pathogenesis of MSI-H cancers. Mutations in TGFBR2 and BAX may improve survival in MSI-H Dukes B2 patients, and mutations of ACVR2 may augment histological changes consistent with poor tumor grade that is characteristic of MSI-H colon cancers, and increase tumor size. ' 2005 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.