The rat prelimbic prefrontal cortex and nucleus accumbens core are critical for initiating cocaine seeking. In contrast, the neural circuitry responsible for inhibiting cocaine seeking during extinction is unknown. The present findings using inhibition of selected brain nuclei with GABA agonists show that the suppression of cocaine seeking produced by previous extinction training required activity in the rat infralimbic cortex. Conversely, the reinstatement of drug seeking by a cocaine injection in extinguished animals was suppressed by increasing neuronal activity in infralimbic cortex with the glutamate agonist AMPA. The cocaine seeking induced by inactivating infralimbic cortex resembled other forms of reinstated drug seeking by depending on activity in prelimbic cortex and the basolateral amygdala. A primary efferent projection from the infralimbic cortex is to the nucleus accumbens shell. Akin to infralimbic cortex, inhibition of the accumbens shell induced cocaine seeking in extinguished rats. However, bilateral inhibition of the shell also elicited increased locomotor activity. Nonetheless, unilateral inhibition of the accumbens shell did not increase motor activity, and simultaneous unilateral inactivation of the infralimbic cortex and shell induced cocaine seeking, suggesting that an interaction between these two structures is necessary for extinction training to inhibit cocaine seeking. The infralimbic cortex and accumbens shell appear to be recruited by extinction learning because inactivation of these structures before extinction training did not alter cocaine seeking. Together, these findings suggest that a neuronal network involving the infralimbic cortex and accumbens shell is recruited by extinction training to suppress cocaine seeking.
Acid-sensing ion channel 1A (ASIC1A) is abundant in the nucleus accumbens (NAc), a region known for its role in addiction. Because ASIC1A has been previously suggested to promote associative learning, we hypothesized that disrupting ASIC1A in the NAc would reduce drug-associated learning and memory. However, contrary to this hypothesis, we found that disrupting ASIC1A in the NAc increased cocaine-conditioned place preference, suggesting an unexpected role for ASIC1A in addiction-related behavior. Moreover, overexpressing ASIC1A in rat NAc reduced cocaine self-administration. Investigating the underlying mechanisms, we identified a novel postsynaptic current during neurotransmission mediated by ASIC1A and ASIC2 and thus well-positioned to regulate synapse structure and function. Consistent with this possibility, disrupting ASIC1A altered dendritic spine density and glutamate receptor function, and increased cocaine-evoked plasticity in AMPA-to-NMDA ratio, all resembling changes previously associated with cocaine-induced behavior. Together, these data suggest ASIC1A inhibits plasticity underlying addiction-related behavior, and raise the possibility of therapies for drug addiction by targeting ASIC-dependent neurotransmission.
Long-term changes in glutamate transmission in the nucleus accumbens core (NAcore) contribute to the reinstatement of drug seeking after extinction of cocaine self-administration. Whether similar adaptations in glutamate transmission occur during heroin and cueinduced reinstatement of heroin seeking is unknown. After 2 weeks of heroin self-administration and 2 weeks of subsequent extinction training, heroin seeking was induced by a noncontingent injection of heroin or by presentation of light/tone cues previously paired with heroin infusions. Microdialysis was conducted in the NAcore during reinstatement of heroin seeking in animals extinguished from heroin self-administration or in subjects receiving parallel (yoked) noncontingent saline or heroin. Reinstatement by either heroin or cue increased extracellular glutamate in the NAcore in the self-administration group, but no increase was elicited during heroin-induced reinstatement in the yoked control groups. The increase in glutamate during heroin-induced drug seeking was abolished by inhibiting synaptic transmission in the NAcore with tetrodotoxin or by inhibiting glutamatergic afferents to the NAcore from the prelimbic cortex. Supporting critical involvement of glutamate release, heroin seeking induced by cue or heroin was blocked by inhibiting AMPA/kainate glutamate receptors in the NAcore. Interestingly, although a heroin-priming injection increased dopamine equally in animals trained to self-administer heroin and in yoked-saline subjects, inhibition of dopamine receptors in the NAcore also blocked heroin-and cueinduced drug seeking. Together, these findings show that recruitment of the glutamatergic projection from the prelimbic cortex to NAcore is necessary to initiate the reinstatement of heroin seeking.
Cortico-striatal glutamate transmission has been implicated in both the initiation and expression of addiction related behaviors, such as locomotor sensitization and drug seeking. While glutamate transmission onto dopamine cells in the ventral tegmental area undergoes transient plasticity important for establishing addiction-related behaviors, glutamatergic plasticity in the nucleus accumbens is critical for the expression of these behaviors. This information points to the value of exploring pharmacotherapeutic manipulation of glutamate plasticity in treating drug addiction.
Inhibitory optogenetics was used to examine the roles of the prelimbic cortex (PL), the nucleus accumbens core (NAcore) and the PL projections to the NAcore in the reinstatement of cocaine seeking. Rats were microinjected into the PL or NAcore with an adeno-associated virus containing halorhodopsin or archaerhodopsin. After 12 days of cocaine self-administration, followed by extinction training, animals underwent reinstatement testing along with the presence/absence of optically induced inhibition via laser light. Bilateral optical inhibition of the PL, NAcore or the PL fibers in the NAcore inhibited the reinstatement of cocaine seeking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.