Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.
We report a composite material consisting of precipitated micron-scale Ta-rich solid solution particles distributed in a bulk metallic glass matrix. The reinforcing ductile particles are precipitated during melting of the master alloy of glass-forming (Zr70Ni10Cu20)82Ta8Al10, by using previously prepared metastable Zr–Ta solid solution binary ingots. Upon cooling from the melt, the matrix undergoes a glass transition to produce an amorphous phase while the particles of precipitated Ta solid solution are distributed in the glass matrix. The resulting material not only shows high strength (∼2.1 GPa), but also has dramatically enhanced plastic strain to failure in uniaxial compression relative to single-phase bulk metallic glasses. The composite also displays limited tensile ductility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.