We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.
Episodic memories, or consciously accessible memories of unique events, represent a key aspect of human cognition. Evidence from rodent models suggests that the neural representation of these complex memories requires cooperative firing of groups of neurons on short time scales, organized by gamma oscillations. These co-firing groups, termed “neuronal assemblies,” represent a fundamental neurophysiological unit supporting memory. Using microelectrode data from neurosurgical patients, we identify neuronal assemblies in the human MTL and show that they exhibit consistent organization in their firing pattern based on gamma phase information. We connect these properties to memory performance across recording sessions. Finally, we describe how human neuronal assemblies flexibly adjust over longer time scales. Our findings provide key evidence linking assemblies to human episodic memory for the first time.
The Steller sea lion is the largest member of the Otariidae family and is found in the coastal waters of the northern Pacific Rim. Here, we present the Steller sea lion genome, determined through DNA sequencing approaches that utilized microfluidic partitioning library construction, as well as nanopore technologies. These methods constructed a highly contiguous assembly with a scaffold N50 length of over 14 megabases, a contig N50 length of over 242 kilobases and a total length of 2.404 gigabases. As a measure of completeness, 95.1% of 4104 highly conserved mammalian genes were found to be complete within the assembly. Further annotation identified 19,668 protein coding genes. The assembled genome sequence and underlying sequence data can be found at the National Center for Biotechnology Information (NCBI) under the BioProject accession number PRJNA475770.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.