Ketone bodies , β-hydroxybutyrate (BHB) and acetoacetate support mammalian survival during states of energy deficit by serving as alternative source of ATP1. BHB levels are elevated during starvation, high-intensity exercise or by the low carbohydrate ketogenic diet2. Prolonged caloric restriction or fasting reduces inflammation as immune system adapts to low glucose supply and energy metabolism switches towards mitochondrial fatty acid oxidation, ketogenesis and ketolysis2-6. However, role of ketones bodies in regulation of innate immune response is unknown. We report that BHB, but neither acetoacetate nor structurally-related short chain fatty acids, butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to several structurally unrelated NLRP3 activators, without impacting NLRC4, AIM2 or non-canonical caspase-11 inflammasome activation. Mechanistically, BHB inhibits NLRP3 inflammasome by preventing K+ efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 were not dependent on chirality or classical starvation regulated mechanisms like AMPK, reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocked NLRP3 inflammasome without undergoing oxidation in TCA cycle, independently of uncoupling protein-2 (UCP2), Sirt2, receptor Gpr109a and inhibition of NLRP3 did not correlate with magnitude of histone acetylation in macrophages. BHB reduced the NLRP3 inflammasome mediated IL-1β and IL-18 production in human monocytes. In vivo, BHB attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases like Muckle-Wells Syndrome (MWS), Familial Cold Autoinflammatory syndrome (FCAS) and urate crystal induce body cavity inflammation. Taken together, these findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be mechanistically linked to BHB-mediated inhibition of the NLRP3 inflammasome, and point to the potential use of interventions that elevate circulating BHB against NLRP3-mediated proinflammatory diseases.
SUMMARY Despite a wealth of clinical data showing an association between inflammation and degenerative disorders in elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism that the Nlrp3 inflammasome controls systemic low grade age-related ‘sterile’ inflammation in both periphery and brain independently of the non-canonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome and astrogliosis. Consistent with the hypothesis that systemic low grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases.
Summary Obesity is associated with infiltration of macrophages into adipose tissue (AT), contributing to insulin resistance and diabetes. However, relatively little is known regarding the origin of AT macrophages (ATMs). We discovered that murine models of obesity have prominent monocytosis and neutrophilia, associated with proliferation and expansion of bone marrow (BM) myeloid progenitors. AT transplantation conferred myeloid progenitor proliferation in lean recipients, while weight loss in both mice and humans (via gastric bypass) was associated with a reversal of monocytosis and neutrophilia. Adipose S100A8/A9 induced ATM TLR4/MyD88 and NLRP3 inflammasome-dependent IL-1β production. IL-1β interacted with the IL-1 receptor (IL-1R) on BM myeloid progenitors to stimulate the production of monocytes and neutrophils. These studies uncover a positive feedback loop between ATMs and BM myeloid progenitors, and suggest that inhibition of TLR4 ligands or the NLRP3-IL-1β signaling axis could reduce AT inflammation and insulin resistance in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.