An ongoing challenge in children presenting with motor delay/impairment early in life is to identify neurogenetic disorders with a clinical phenotype which can be misdiagnosed as cerebral palsy (CP). To help distinguish patients in these two groups, conventional magnetic resonance imaging (MRI) of the brain has been of great benefit in “unmasking” many of these genetic etiologies and has provided important clues to differential diagnosis in others. Recent advances in molecular genetics such as chromosomal microarray and next generation sequencing have further revolutionized the understanding of etiology by more precisely classifying these disorders with a molecular cause. In this paper, we present a review of neurogenetic disorders masquerading as cerebral palsy evaluated at one institution. We have included representative case examples children presenting with dyskinetic, spastic and ataxic phenotypes, with the intent to highlight the time honored approach of using clinical tools of history and examination to focus the subsequent etiologic search with advanced neuroimaging modalities and molecular genetic tools. A precise diagnosis of these masqueraders and their differentiation from CP is important in terms of therapy, prognosis, and family counseling. In summary, this review serves as a continued call to remain vigilant for current and other to-be-discovered neurogenetic masqueraders of cerebral palsy, thereby optimizing care for patients and their families.
Despite recent advances in neonatal care and monitoring, asphyxia globally accounts for 23% of the 4 million annual deaths of newborns, and leads to hypoxic-ischemic encephalopathy (HIE). Occurring in five of 1000 live-born infants globally and even more in developing countries, HIE is a serious problem that causes death in 25%–50% of affected neonates and neurological disability to at least 25% of survivors. In order to prevent the damage caused by HIE, our invention provides an effective whole-body cooling of the neonates by utilizing evaporation and an endothermic reaction. Our device is composed of basic electronics, clay pots, sand, and urea-based instant cold pack powder. A larger clay pot, lined with nearly 5 cm of sand, contains a smaller pot, where the neonate will be placed for therapeutic treatment. When the sand is mixed with instant cold pack urea powder and wetted with water, the device can extract heat from inside to outside and maintain the inner pot at 17°C for more than 24 hours with monitoring by LED lights and thermistors. Using a piglet model, we confirmed that our device fits the specific parameters of therapeutic hypothermia, lowering the body temperature to 33.5°C with a 1°C margin of error. After the therapeutic hypothermia treatment, warming is regulated by adjusting the amount of water added and the location of baby inside the device. Our invention uniquely limits the amount of electricity required to power and operate the device compared with current expensive and high-tech devices available in the United States. Our device costs a maximum of 40 dollars and is simple enough to be used in neonatal intensive care units in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.